مقایسه سمیت نانو ذرات نقره در سه گونه ماهی کپورمعمولی (cyprinus carpio)،آمور (Ctenopharyngodon idella) و فیتوفاگ (Hypophthamichthys molitrix)

نوع مقاله : بیماری ها

نویسندگان

1 گروه علوم درمانگاهی، دانشکده دامپزشکی دانشگاه شهید چمران اهواز، اهواز، ایران، صندوق پستی: 135

2 دانشکده دامپزشکی دانشگاه شهید چمران اهواز، اهواز، ایران، صندوق پستی: 135

چکیده

ترکیبات نقره از دیرباز اثرات ضدعفونی کننده داشته و در آبزیان نیز امکان استفاده دارند. در این تحقیق اثرات سمی (50LC) دو محصول کلوئیدی محلول در آب نانوذرات نقره (L2000 و LS2000) در سه گونه ارزیابی گردید.  بدین­منظور ماهی­ ها به ­مدت 96 ساعت در معرض7 یا 8 غلظت متوالی (هر غلظت در سه تکرار) از دو نوع نانوذرات نقره قرار داده شده و تلفات روزانه در هر غلظت ثبت گردید. سپس حداکثرغلظت مجاز (MAC) نیز محاسبه شد. طبق نتایج میزان 50 LC نود و شش ساعته L2000 در ماهی کپور، آمور و فیتوفاگ به ­ترتیب برابر 0/099 و 0/076 و 0/238 میلی­ گرم در لیتر و میزان  50 LC نود و شش ساعته LS2000 به­ ترتیب برابر 0/058 و0/057 و  0/094 میلی­ گرم در لیتر  محاسبه شد. 99 LC نود و شش ساعته نانوذرات نقره نوع L2000 در این سه ماهی به ­ترتیب برابر 0/246، 0/135، 0/658 میلی گرم در لیتر و در مورد Ls2000 به ­ترتیب برابر 0/092 ،0/096 ، 0/161 میلی ­گرم در لیتر بود، که نشان ­دهنده تفاوت معنی ­دار این دو غلظت در هر سه ماهی ذکر شده  است (0/05>p). حداکثر غلظت مجاز (MAC) نانوذرات نقره L2000 و LS2000 در ماهی کپور به ­ترتیب برابر 0/010 و0/006 میلی­ گرم در لیتر، در ماهی آمور به ­ترتیب برابر 0/008 و 0/006 میلی­ گرم در لیتر و برای فیتوفاگ به ­ترتیب برابر 0/024 و 0/009 میلی­­­ گرم در لیتر مشخص گردید. نتایج علاوه بر تأکید بر حساسیت بالای این سه  گونه ماهی به این دو نانوذره نقره، تفاوت معنی ­دار سمیت این دو نانوذره در سه گونه ماهی مورد بررسی را نشان داد (0/05>p).

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Toxicity of Silver Nanoparticles in Three fish species: Cyprinus carpio, Ctenopharyngodon idella and Hypophthamichthys molitrix

نویسندگان [English]

  • Mojtaba Alishahi 1
  • Mehrzad Masbah 1
  • Zahra Tulabi Dezfuli 2
1 Department of Clinical sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz- Iran
2 Department of Fish Health, Faculty of Veterinary , Shahid Chamran University, Ahvaz. Iran
چکیده [English]

Silver compounds have long been as disinfectant and can be used in aquaticulture. In this study the toxicity effects (LC50)) of two Silver nanoparticles (L2000 and Ls2000) in three species were calculated. Each species were challenged with 6- 8 serial dilutions of Nanoparticles and daily mortality recorded for 96 hours. Results showed that LC50 96h of  Nanosilver  in Cyprinus carpio, Ctenopharyngodon idella and Hypophthamichthys molitrix ofSilver nanoparticles (L2000 ) were  0.099,  0.076  and 0.238 mg/l and LC50 96h of Nanosilver in three species of Cyprinid fishes Silver nanoparticles (Ls2000 ) were 0.058, 0.057 and 0.094 mg/l and LC99, 96h of  Nanosilver in three species of Cyprinid fishes Silver nanoparticles (L2000 ) were 0.246, 0.135 and 0.658 mg/l and for Silver nanoparticles (Ls2000 ) were 0.092, 0.096 and 0.161 mg/l ,There was Significant difference among toxicity rate of two silver nanoparticles in three species of Cyprinid fishes (P<0.05). Respectively, versus The MAC of two Silver nanoparticles (L2000 and Ls2000) toxicity in Cyprinus carpio were 0.010 and 0.006 and The MAC of two Silver nanoparticles toxicity in Ctenopharyngodon idella were 0.008 and 0/006 and in Hypophthamichthys molitrix were 0/024 and 0/009. According to the results of this study it can be conducted three species of fishes is highly susceptible to L-2000 and Ls-2000, but Ls-200 is more toxic.

کلیدواژه‌ها [English]

  • Cyprinus carpio
  • Hypophthamichthys molitrix
  • Ctenopharyngodon idella
  • nanosilver
  • Toxicity
  • MAC (Maximum Acceptable Concentration)
  1. علیشاهی، م.؛ مصباح، م. و قربانپور، م.، 1390. بررسی سمیت نانوذرات نقره در چهار گونه ماهی، مجله دامپزشکی ایران. دوره 7، شماره 1، صفحات 36 تا 41.
  2. Bar-Ilan, O.; Albrecht, R.M.; Fako, V.E. and Furgeson, D.Y., 2009. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small. Vol. 5, pp: 1897-1910.
  3. Bilberg, K.; Malte, H.; Wang, T. and Baatrup, E., 2010. Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Percafluviatilis). Aquatic Toxicology. Vol. 96, pp: 159-165.
  4. Chae, Y.J.; Pham, C.H.; Lee, J.; Bae, E.; Yi, J. and Gu, M.B., 2009. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquatic Toxicology. Vol. 94, pp: 320-327.
  5. Chen, X. and Schluesener, H.J., 2008. Nanosilver: A nanoproduct in medical application. Toxicology letters. Vol. 176, pp: 1-12.
  6. Choi, J.E.; Kim, S.; Ahn, J.H.; Youn, P.; Kang, J.S.; Park, K.;Yi, J. and Ryu, D.Y., 2010. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquatic Toxicology. Vol. 100, pp: 151-159.
  7. Choi, O. and Hu, Z., 2008.  Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science and Technology. Vol. 42, pp: 4583-4588.
  8. Choi, O.; Yu, C.P.; Fernández, G.E. and Hu, Z., 2010. Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Research. Vol. 44, pp: 6095-6103.
  9. Chopra, I., 2007. The increasing use of silver-based products as antimicrobial agents: A useful development or a cause for concern? The Journal of Antimicrobial Chemotherapy. Vol. 59, pp: 587-590.
  10. Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G. and Galdiero, M., 2015. Silver nanoparticles as potential antibacterial agents. Molecules. Vol. 20, pp: 8856-8874. 
  11. Gong, P.; Li, H.; He, X.; Wang, K.; Hu, J.; Tan, W.; Zhang, S. and Yang, X., 2007. Preparation and antibacterial activity of Fe3 O4-Ag nanoparticles. Nanotechnology. Vol. 18, pp: 285604.
  12. Griffitt, R.J.; Luo, J.; Gao, J.; Bonzongo, J.C. and Barber, D.S., 2008. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry. Vol. 27, pp: 1972-1978
  13. Holt, K.B. and Bard, A.J., 2005. Interaction of silver (I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag. Biochemistry. Vol. 44, pp: 13214-13223.
  14. Johari, S.A.; Kalbassi, M.R.; Soltani, M. and Yu, I.J., 2015. Study of fungicidal properties of colloidal silver nanoparticles (AgNPs) on trout egg pathogen, Saprolegnia sp. International J of Aquatic Biology. Vol. 3, pp: 191-198.
  15. Katuli, K.K.; Massarsky, A.; Hadadi, A. and Pourmehran, Z. 2014. Silver nanoparticles inhibit the gill Na+/K+-ATPase and erythrocyte AChE activities and induce the stress response in adult zebrafish. Ecotoxicology and Environmental Safety. Vol. 106, pp: 173-180.
  16. Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.I.; Kim, S.H.; Park, S.J.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H. and Cho, M.H., 2007. Antimicrobial effects of silver nanopaticles. Nanomedicine. Vol. 3, pp: 95-101.
  17. Kim, S.H.; Woo, K.S.; Liu, B.Y.H. and Zachariah, M.R., 2005. Method of measuring charge distribution of nanosized aerosols.Journal of Colloid and Interface Science. Vol. 282, pp: 46-57.
  18. Lansdown, A.B., 2002. Silver I: Its antibacterial properties and mechanism of action. Journal of Wound Care. Vol. 11, pp: 125-130.
  19. Lapresta-Ferna´ndez, A.; Ferna´ndez, A. and Blasco, J., 2012. Nanoecotoxicity effects of ngineered silver and gold nanoparticles in aquatic organisms. Trends in Analytical Chemistry. Vol. 32, pp: 40-59.
  20. Lee, H.J. and Jeong, S.H., 2005. Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics. Textile Research Journal. Vol. 75, pp: 551-556.
  21. Lee, K.J.; Nallathamby, P.D.; Browning, L.M.; Osgood, C.J. and Xu, X.H.N., 2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano. Vol. 1, pp: 133-143.
  22. McCarthy, M.P.; Carroll, D.L. and Ringwood, A.H., 2013. Tissue specific responses of oysters, Crassostrea virginica, to silver nanoparticles. Aquatic Toxicolog. Vol.138, pp: 123-128.
  23. Monfared, A.L.; Bahrami, A.M.; Hosseini, E.; Soltani, S. and Shaddel, M., 2015. Effects of nano-particles on histo pathological changes of the fish. Jornal of Environment and Health Sciences and Engineering. Vol. 13, pp: 62- 73.
  24. Nafisi Bahabadi, M.; Hosseinpour Delavar, F.; Mirbaksh, M.; Niknam, K.H. and Johari, S.A., 2016. Assessing antibacterial effect of filter media coated with silver nanoparticles against Bacillus spp. Iranian South Medical Journal. Vol. 19, pp: 1-14.
  25. Reynolds, G.H., 2001. Environmental Regulation of Nanotechnology: Some Preliminary Observations. Environmental Law Reporter News and Analysis. Vol. 31, pp: 10681-10688.
  26. Scown, T.M.; Santos, E.M.; Johnston, B.D.; Gaiser, B.; Baalousha, M.; Mitov, S.; Lead, J.R.; Stone, V.; Fernandes, T.F.; Jepson, M. and van Aerle, R., 2010. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicological Sciences. Vol. 115, pp: 521-534.
  27. Shahbazzadeh, D.; Ahari, H.; Rahimi, N.M.; Dastmalchi, F. and Soltani, M.; Fotovat, M.; Rahmannya, J. and Khorasani, N., 2009. The effects of Nanosilver on survival percentage of rainbow trout (Oncorhynchus mykiss). Pakistan Journal of Nutrition. Vol. 8, pp: 1178-1180.
  28. Sharma, V.K.; Yngard, R.A. and Lin, Y., 2009. Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science. Vol. 145, pp: 83-96.
  29. Sharma, N.; Rather, M.A.; Ajima, M.N., Gireesh-Babu, P.; Kumar, K.; and Sharma. R., 2016. Assessment of DNA damage and molecular responses in Labeo rohita, following short-term exposure to silver nanoparticles. Food and Chemical Toxicology. Vol. 96, pp: 122-132.
  30. Soltani, M.; Torabzadeh, N. and Soltani, A., 2009. Toxicity of nanosilver suspension (Nanocide) in rainbow trout. The First International Congress on Aquatic Animal Health Management and Disease. 112 p.
  31. TCR, 1984. OECD guideline for testing of chemicals. Section 2. Effect on biotic systems. pp: 1-39.
  32. Wu, Y.; Zhou, Q.; Li, H.; Liu, W.; Wang, T. and Jiang, G., 2010. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquatic Toxicology. Vol. 100, pp: 160-167.