پویش ژنومی نشانه های انتخاب در اسب نژاد کرد

نوع مقاله : ژنتیک

نویسندگان

1 گروه علوم دامی، دانشگاه گنبد کاووس، گنبد کاووس، ایران، صندوق پستی: 163

2 گروه علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران، صندوق پستی: 5780

3 گروه علوم دامی، پردیس دانشگاه تهران، کرج، ایران، صندوق پستی: 4111

4 گروه علوم دامی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران، صندوق پستی: 313

چکیده

انتخاب جهش­های مفید در برخی جمعیت­ ها سبب به ­جا گذاشتن نشانه­ هایی در سطح ژنوم می­ شود. به ­دلیل ارتباط این مناطق با صفات مهم اقتصادی شناسایی این مناطق از ژنوم از موضوعات مهم در پژوهش ­های ژنتیک حیوانی است. این پژوهش با هدف شناسایی مناطق ژنومی حامل نشانه ­های انتخاب در اسب نژاد کرد با استفاده از ریزآرایه نانویی اسب 70K انجام شد. تعداد 28 رأس اسب نژاد کرد از مناطق مختلف کردستان و کرمانشاه انتخاب، بعد از خونگیری و استخراج DNA، تعیین ژنوتیپ شدند. جهت جستجوی نشانه‌‌های انتخاب از دو آزمونEHH  و iHS در محیط R و با استفاده از بسته نرم ­افزاری rehh استفاده شد. به­ منظور بررسی ژن­ ها و QTLهای احتمالی در مناطق کاندیدای انتخاب، از پایگاه داده­ های نشانگر تک نکلئوتیدی اسب و پایگاه QTL حیوانات استفاده شد. با استفاده از آماره iHS، 9 منطقه ژنومی روی کروموزوم‌‌های 11، 7، 5 و 15  به­ عنوان مناطق کاندیدای نشانه انتخاب، شناسایی شد. جهت ارزیابی اثر انتخاب در این مناطق از آماره EHH به ­همراه بررسی دیاگرام‌‌های شاخه‌‌ بندی هاپلوتیپی و بررسی طول LD استفاده شد. روی کروموزوم­ های 7 و 11 مناطقی به ­عنوان مناطق حامل نشانه ­های انتخاب مثبت شناسایی شده و مناطق ژنومی روی کروموزوم ­های 5 و15 علی ­رغم فراوانی بالای آللی اثری از انتخاب مثبت اخیر در این نواحی ژنومی مشاهده نشد و آلل­ ها به ­عنوان آلل­ های رایج و قدیمی مشاهده شد. در این مناطق تعدادی ژن و QTL شناسایی شد که در زمینه فعالیت عضلانی، سیستم ایمنی و فعالیت­ های درون سلولی فعالیت دارند. بنابراین، این مناطق از ژنوم اسب کرد احتمالاً هدف انتخاب مثبت بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Genomic Scan of Selective Signature in Kurd Horse

نویسندگان [English]

  • Ali Reza Khanahmadi 1
  • Ghodrat rahimimianji 2
  • Mohammad Hossein Moradi Shahr Babak 3
  • Seyyed Hassan Hafezian 2
  • Mohammad bagher Zandi 4
1 Animal Science Department, Gonbad-e-Kavous University, Gonbad-e-Kavos, Iran, P.O.Box: 163
2 Animal Science Department, Agricultural Sciences and Natural Resources University of Sari, Sari, Iran, POBox: 5780
3 Department of Animal Science, Campus of Tehran University, Karaj, Iran, POBox: 4111
4 Department of Animal Science, Faculty of Agriculture, Zanjan University, Zanjan, Iran, POBox: 313
چکیده [English]

The selection of useful mutations in some populations will leave footprints at the genome level. Because of the link between these regions and important economic traits, genomics is one of the important issues in animal genetic research. The aim of this research is to identify regions of the genome which carrier signature of selection in Kurd horse using 70kb SNP markers. 28 horses selected from the different area of Kurdistan and Kermanshah, after collected sample, DNA extracted, they were genotyping. To detect footprint of signal selection, extended haplotype homozygosity (EHH) and integrated Haplotype Score (iHS) was used. The using of iHS statistics, 9 genomic regions on chromosomes 5,7,11 and 15 as regions candidate of footprint selection, identified. For the detect effect of selection on this region, used of EHH as well as investigate of bifurcation diagram of haplotype and LD. In order to evaluate the possible genes and QTLs in selected candidate regions, used of the horse SNP databases (HSDB) and the QTL of the animals. The regions on 7 and 11 chromosomes were observed as candidate positive selection while in other regions (chromosomes 5 and 15), notwithstanding allele frequency, it wasn’t affected positive selection so these alleles were the common and old alleles. In these regions, a number of genes and QTLs were identified that are active in the muscle, immune system and intracellular activity. Therefore, these genomic regions of Kurd horse, probability were targeted positive selection.

کلیدواژه‌ها [English]

  • Genomic scan
  • Signal of selection
  • Kurd horse
  1. انصاری ­پیرسرایی، ز.؛ جعفری­ صیادی، ع. و نویدشاد، ب.، 1382. مباحثی از بیوشیمی در علوم دامی. انتشارات حق شناس. 150 صفحه.
  2. مخبر، م.؛ مرادی­ شهربابک، م.؛ صادقی، م.؛ مرادی­ شهربابک، ح. و ویلیامز، ج.، 1394. پویش ژنومی نشانه ­های انتخاب در گاومیش­ های خوزستانی و مازندرانی. علوم دامی ایران. دوره 64، شماره2، صفحات 119 تا 131.
  3. مرادی، م.ح.؛نجاتی­ جوارمی، ا.؛ مرادی­ شهربابک، م.؛ دادز، ک. و مکایوان، ج.، 1389. کاوش ژنومیک تمایز جمعیتی در نژادهای زل و لری بختیاری. مجله بیوتکنولوژی کشاورزی. دوره 2، شماره2، صفحات 58 تا 70.
  4. قلی ­زاده، م.؛ رحیمی ­میانجی، ق. و  نجاتی­ جوارمی، ا.، 1393. بررسی عدم تعادل لینکاژی و مطالعه ارتباط ژنومی هاپلوتیپی جهت شناسایی مناطق ژنومی مؤثر بر دوقلوزایی در گوسفندان نژاد بلوچی. پژوهش­ های تولیدات دامی. سال 5، شماره 10، صفحات 166 تا 178.
  5. Akey, J.M., 2009. Constructing genomic maps of positive selection in humans. Where do we go from here? Genome Research. Vol. 19, pp: 711-722.
  6. Bahbahani, H.; Clifford, H.; Wragg, D.; Mbole-Kariuki, M.N.; Tassell, C.V.; Sonstegard, T.; woolhouse, M. and Hanotte, O., 2015. Signatures of positive selection in East African Shorthorn Zebu: A genome-wide single nucleotide polymorphism analysis. Scientific Reports. Vol. 5, pp: 1-13.
  7. Barrett, R.D.H. and Schluter, D., 2007. Adaptation from standing genetic variation. Trends in Ecology and Evolution. Vol. 23, pp: 38-44.
  8. Biswas, S. and Akey, J.M., 2006. Genomic insights into positive selection. Trends in Genetics. Vol. 22, pp: 437-436.
  9. Charlesworth, B., 2007. A hitch-hiking guide to the genome: A commentary on 'The hitch-hiking effect of a favourable gene' by John Maynard Smith and John Haigh. Genetic Research. Vol. 89, pp: 389-390.
  10. Diamond, J., 2002. Evolution, consequences and future of plant and animal domestication. Nature. Vol. 418,
    pp:700-707.
  11. Emmeline, W.H.; Beatrice, A.M.; Jingjing, G.U.; Ronan, W. and David, E.M., 2010. A genome-wide SNP-association study onfirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC genetics. Vol. 11, pp: 1-10.
  12. Flory, L.; Fritz, S.; Jaffrézic, F.; Boussaha, M.; Gut, I.; Heath, S.; Foulley, J.L. and Gautier, M., 2009. The genome response to artificial selection: A case study in dairy cattle. PLOS One. Vol. 4, pp: 6595.
  13. Gautier, M. and Renaud, V., 2012. Rehh: An R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics. Vol. 28, pp: 1176-1177.
  14. Harris, E.E. and Meyer, D., 2006. The molecular signature of selection underlying human adaptations. American Journal of Physical Anthropology. Vol. 131, pp: 89-130.
  15. Hayes, B.; Lien, S.; Nilsen, H.; Olsen, H.G.; Berg, P.; MacEachern, S.; Potter, S. and Meuwissen, T.H.E., 2008. The origin of selection signatures on bovine chromosome six. Animal Genetics. Vol. 39, pp: 105-111.
  16. Jessica Petersen, J.L.; Mickelson, J.R.; Cothran, E.G.; L.S. and Andersson, J.A., 2013. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLOS ONE. Vol. 8, No. 1, pp: 54997.
  17. Kaplan, N.L.; Hudson, R.R. and Langley, C.H., 1989. The Hitchhiking Effect revisited. Genetics. Vol. 123, pp: 887-899. 
  18. Kim, Y. and Stephan, W., 2002. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics. Vol. 160, pp: 765-777. 
  19. Kimura, M., 1989. The neutral theory of molecular evolution and the world view of neutralists. Genome. Vol. 31, pp: 24-31.
  20. Maynard-Smith, J. and Haigh, J., 1974. The hitch-hiking effect of a favorable gene. Genetic Research. Vol. 23,
    pp: 23-35.
  21.  Miller, S.A.; Dykes, D.D. and Pole sky, H.F., 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research. Vol. 16, 1215 p.
  22. Nielsen, R., 2001. Statistical tests of selective neutrality in the age of genomics. Heredity. Vol. 86, pp: 641-647.
  23. Nielsen, R., 2005. Molecular signatures of natural selection. Annual Review of Genetics. Vol. 39, pp:197-218. 
  24. Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; Bakker, P.I. and Daly, M.J., 2007. PLINK: a tool set for whole genome association and population-based linkage analyses. The American Journal of Human Genetics. Vol. 81, pp: 559-575.
  25. Qanbari, S.; Gianola, D.; Hayes, B.; Schenkel, F.; Miller, S.; Moore, S.; Thaller, G. and Simianer, H., 2011. Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle. BMC Genomics. Vol. 16, pp: 12-318.
  26. Qanbari, S.; Pausch, H.; Janse, S.; Somel, M.; Strom, T.M.; Fries, R.; Nielsen, R. and Simianer, H., 2014. Classic selective sweeps revealed by massive sequencing in cattle. PLOS Genet. Vol. 10, pp:1004148.
  27. Sabeti, P.; Reich, D.E.; Higgins, J.M.; Levine, H.Z.; Richter,  D.J.; Schaffner, S.F.; Gabriel, S.B.; Platko, J.V.; Patterson, N.J.; McDonald, G.J.; Ackerman, H.J.; Campbell, S.J.; Altshuler, D.;   Cooper, R.; Kwiatkowski,  D.; Ward, R. and  Lander, E.S., 2002.  Detecting recent positive selection in the human genome from haplotype structure. Nature. Vol. 419, pp:832-837.
  28. Sabeti, P.; Schaffner, S.F.; Fry, B.; Lohmueller, J.; Varilly, P.; Shamovsky, O.; Palma, A.; Mikkelsen, T.S.; Altshuler, D. and Lande, E.S., 2006. Positive natural selection in the human lineage. Science. Vol. 3129,
    pp: 1614-1620.
  29. Scheet, P. and Stephens, M., 2006. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. The American Journal of Human Genetics. Vol. 78, pp: 629-644.
  30. Schurink, A.; Ducro, B.J.; Bastiaansen, J.W.M.; Frankena, K. and van Arendonk, J.A.M., 2012. Genome wide association study of insect bite hypersensitivity in Dutch Shetland pony marses. Animal genetics. Vol. 44,
    pp: 44-52.
  31. Teo, Y.Y.; Fry, A.E.; Clark, T.G.; Tai, E.S. and Seielstad, M., 2007. On the Usage of HWE for identifying genotyping errors. Annals of Human Genetics. Vol. 71, pp: 701-703.
  32. Voight, B.F.; Kudaravalli, S.; Wen, X. and Pritchard. J.K., 2006. A map of recent positive selection in the human genome. PLOS Biology. Vol. 4, pp: 72.
  33. Yun Young, G.O.; Ernest, B.;   Deborah, G.; Cook, J.; Stephen, J.; Coleman, J.; James, N.;  MacLeod, N.; Kuey-Chu, C.; Peter, J.; Timoney, J. and  Udeni Balasuriya, B.R., 2011. Genome-wide association study among four horse breeds identifies a common haplotype associated with in vitro CD3+ T cell susceptibility/resistance to equine arteritis virus infection. Journal of Virology. Vol. 24, pp:13174-13184.
  34. Zola, H.; Swart, B.; Banham, A.; Barry, S.; Beare, A.; Bensussan, A.; Boumsell, L.; Buckley, D.; Bühring, H.J.; Clark, G.; Engel, P.; Fox, D.; Jin, B.Q.; Macardle, P.J.; Malavasi, F.; Mason, D.; Stockinger, H. and Yang, X., 2007. CD molecules -human cell differentiation molecules. Journal Immunology Methods. Vol. 319,
    pp: 1-5.