اثر غلظت های تحت کشنده نانوذرات نقره و نیترات نقره بر ماهی کپورمعمولی (Cyprinus carpio. L): تغییرات خون شناسی و آنتی اکسیدانی

نوع مقاله : فیزیولوژی (جانوری)

نویسندگان

گروه تکثیر و پرورش آبزیان، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

با توجه به کاربرد بالای نقره و هم­ چنین احتمال در معرض گرفتن آبزیان، امکان در معرض قرارگیری این موجودات با این فلز زیاد است. لذا این مطالعه با هدف بررسی و مقایسه اثرات تحت حاد نانوذرات نقره و نیترات نقره بر بقاء، شاخص ­های مختلف خونی و هم­ چنین آنزیم ­های شاخص آنتی­ اکسیدانی در ماهی کپورمعمولی انجام شد. ابتدا غلظت کشندگی 50% و 96 ساعته برای دو شکل نقره به ­دست آمد و سپس ماهیان به ­مدت 21 روز در معرض %15 و 30% از غلظت حاد محاسبه شده (0/4 و 0/8 میلی­ گرم در لیتر نانوذرات و هم­ چنین 0/025 و 0/045 میلی­ گرم در لیتر نیترات نقره) قرار گرفتند. متوسط غلظت حاد 96 ساعته برای نانوذرات نقره و نیترات نقره به ­ترتیب 0/02±0/29 و 0/05±0/15 میلی­ گرم در لیتر بود. نتایج نشان ­دهنده اختلالات مختلفی در شاخص ­های خون­ شناسی ازجمله کاهش تعداد گلبول­ های قرمز و افزایش تعداد گلبول­ های سفید بود. هم ­چنین آنزیم SOD در اکثر تیمارهای درمعرض قرار گرفته در مقایسه با گروه شاهد القاء شد. این مطالعه نشان داد نیترات نقره در غلظت های پایین ­تری اثرات کشندگی خود را اعمال می­ کند و هر دو شکل نقره تقریباً به شکل یکسان باعث تغیییرات در فاکتورهای ایمنی ذاتی و شاخص ­های استرس اکسیداتیو در ماهیان درمعرض قرار گرفته شدند اما در آنزیم SOD این تغییرات در گروه­ های مواجه شده با نیترات نقره کمی بیش ­تر بود. 

کلیدواژه‌ها


عنوان مقاله [English]

The effects of sub-lethal concentrations of silver nanoparticles and silver nitrate on common carp (Cyprinus carpio L.): changes in hematology and antioxidants

نویسندگان [English]

  • Kheyrollah Khosravi Katuli
  • Ali Shabani
  • Hamed Paknejad
  • Mohammad Reza Imanpour
Department of Fishery, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Considering the high application of silver as well as the risk of exposure of aquatic organisms, the possibility of exposing these animals to this metal is high. Therefore, the aim of this study was to investigate and compare the sub-acute effects of silver nanoparticle and silver nitrate on survival, various indices of blood and also antioxidant biomarker in common carp. For this purpose, at first, Lethal Concentration (LC50-96 h) for two silver forms was obtained and then fish were exposed to 15 and 30% of the calculated concentration (0.4 and 0.8 mg / L nanoparticles as well as 0.025 and 0.045 mg / L silver nitrate) for 21 days. LC50-96 h for silver nanoparticles and silver nitrate were 0.29 ± 0.02 and 0.15 ± 0.05 mg/L respectively. The results showed that after exposure to silver nanoparticles and silver nitrate, different disorders were observed in hematologic indices including reducing the RBC and WBC count. The results showed that the SOD enzyme activity in most exposed groups were induced in compare to the control group. This study showed that silver nitrate at lower concentrations show its destructive effects and both forms of silver almost identically changed immunity factors and also oxidative stress in exposed fish, but in the SOD enzyme, these changes were slightly higher in groups exposed to silver nitrate.

کلیدواژه‌ها [English]

  • Fish
  • Ionic and Silver Nanoparticles
  • Toxicology
  • Stress
  1. Baalousha, M.; Manciulea, A.; Cumberland, S.; Kendall, K. and Lead, J.R., 2008. Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environmental Toxicology and Chemistry. Vol. 27, Vol. 9, pp: 1875-1882.
  2. Bilberg, K.; Hovgaard, M.B.; Besenbacher, F. and Baatrup, E., 2011. In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). Journal of toxicology. Vol. 2012, pp: 1-9.
  3. Bilberg, K.; Malte, H.; Wang, T. and Baatrup, E., 2010. Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquatic Toxicology. Vol. 96, pp: 159-165.
  4. Blaser, S.A.; Scheringer, M.; MacLeod, M. and Hungerbuhler, K., 2008. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano functionalized plastics and textiles. Science of the Total Environment. Vol. 390, pp: 396-409.
  5. Buffet, P.E.; Zalouk-Vergnoux, A.; Châtel, A.; Berthet, B.; Métais, I.; Perrein-Ettajani, H.; Luna-Acosta, A.; Thomas-Guyon, H.; Risso-de Faverney, C.; Guibbolini, M.; Gilliland, D.; Valsami-Jones, E. and Mouneyrac, C., 2014. A marine mesocosm study on the environmental fate of silver nanoparticles and toxicity effects on two endobenthic species: The ragworm Hediste diversicolor and the bivalve mollusc Scrobicularia plana. Science of the Total Environment. Vol. 47, pp: 1151-1159.
  6. Campbell, T.W. and Ellis, C.K., 2007. Avian and exotic animal hematology and cytology. Ames (IA).
  7. Dowling, A., 2006. September. Nanoscience and nanotechnologies. In an international symposium on the nature, purposes, ethics and politics of evidence in a democracy. 61 p.
  8. Fulton, M. and Key, H., 2001. Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environmental Toxicology and Chemistry. Vol. 20, No. 1, pp: 37-45.
  9. Gottschalk, F.; Sonderer, T.; Scholz, R.W. and Nowack, B., 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environment science technology.
    Vol. 43, pp: 9216-9222.
  10. Griffitt,R.J.;Brown‐Peterson, N.J.; Savin, D.A; Manning, C.S.; Boube, I.; Ryan, R. and Brouwer, M., 2012.Effects of chronic nanoparticulate silver exposure to adult and juvenile sheepshead minnows. Environmental Toxicology and Chemisty. Vol. 31, pp: 160-167.
  11. Grillo, R.: Rosa, A.H. and Fraceto, L.F., 2015. Engineered nanoparticles and organic matter: a review of the state of the art. Chemosphere. Vol. 119, pp: 608-619.
  12. Hao, L.; Chen, L.; Hao, J. and Zhong, N., 2013. Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicology Environmental Safty. Vol. 91, No. 52, pp: 52-60.
  13. Hao, L.; Chen, L.; Hao, J. and Zhong, N., 2013. Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): A comparative study with its bulk counterparts. Ecotoxicology and Environmental Safety. Vol. 91, pp: 52-60.
  14. Hedayati, A.; Jahanbakhshi, A. and Ghader-Ramazi, F., 2013. Aquatic Toxicology. Published by Gorgan University of Agricultural Sciences and Natural. 210 p.
  15. Houston, A.H., 1997. Are the classical hematological variables acceptable indicators of fish health?. Transactions of the American Fisheries Society. Vol. 126, pp: 879-894.
  16. Karan, V.; Vitorović, S.; Tutundžić, V. and Poleksić, V., 1998. Functional enzymes activity and gill histology of carp after copper sulfate exposure & recovery. Ecotoxicology and Environmental Safety. Vol. 40, No. 12, pp: 49-55.
  17. Kashiwada, S., 2006. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environmental Health Perspective. Vol. 114, 1697 p.
  18. Katuli,K.K.; Massarsky, A.; Hadadi, A.and Pourmehran, Z., 2014. Silver nanoparticles inhibit the gill Na+/K+ ATPase and erythrocyte AChE activities and induce the stress response in adult zebrafish (Danio rerio). Ecotoxicology and environmental safety. Vol. 106, pp: 173-180.
  19. Kehrer, J.P., 1993.Free radicals as mediators of tissue injury and disease. Critical reviews in toxicology. Vol. 23, No. 1, pp: 21-48.
  20. Keller, A.A.; McFerran, S.; Lazareva, A. and Suh, S., 2013.Global life cycle releases of engineered nanomaterials. J of Nanoparticle Research. Vol. 15, pp: 1-17.
  21. Kim, J.; Park, Y.; Yoon, T.H.; Yoon, C.S. and Choi, K., 2010. Phototoxicity of CdSe/ ZnSe quantum dotswith surface coatings of 3-mercaptopropionic acid or tri-n octylphosphine oxide/gum arabic in Daphnia magna under environmentally relevant UV-B light. Aquatic Toxicology. Vol. 97, pp:116-124.
  22. Larsson, Å.; Lehtinen, K.J. and Haux, C., 1980. Biochemical and hematological effects of a titanium dioxide industrial effluent on fish. Bulletin of Environmental Contamination & Toxicology. Vol. 25, No, 427, pp: 427-435.
  23. Muralisankar, T.; Bhavan, P.S.; Radhakrishnan, S.; Seenivasan, C.; Manickam, N. and Srinivasan, V., 2014. Dietary supplementation of zinc nanoparticles and its influence on biology, physiology and immune responses of the freshwater prawn, Macrobrachium rosenbergii. Biological trace element research. Vol. 160, pp: 56-66.
  24. Oruç, E.Ö. and Usta, D., 2007. Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environmental Toxicology and Pharmacology. Vol. 23, No. 1, pp: 48-55.
  25. Rajan, M.; Archana, J.; Ramesh, R. and Keerthika, V., 2017. The present study deals with the toxicity zinc oxide nanoparticles in tilapia Oreochromis mossambicus. zinc oxide nanoparticles were synthesized by chemical precipitation method and characterized using SEM, EDAX, FTIR and XRD. Toxicity tests were conducte. PARIPEX Indian Journal of Research. Vol. 5.
  26. Rozan, T.F.; Hunter, K.S. and Benoit, G., 1995.Silver in fresh water: Sources, transport and fate in Connecticut riversed.^eds. Proceedings of the 3th Argentum International Conference on the Transport, Fate and Effects of Silver in the Environment. pp: 181-184.
  27. Saravanan, M.; Kumar, K.P. and Ramesh, M., 2011. Haematological and biochemical responses of freshwater teleost fish Cyprinus carpio during acute and chronic sublethal exposure to lindane. Pesticide Biochemistry and Physiology. Vol. 100, No. 3, pp: 206-211.
  28. Schmidt,C.W.,2009. Nanotechnology-related environmental, health and safety research: examining the national strategy. Environmental Health Perspectives. Vol. 117, No. 4, pp: A158-A161.
  29. Song, L.; Vijver, M.G.; Peijnenburg, W.J.; Galloway, T.S. and Tyler, C.R., 2015. A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere. Vol. 139, pp: 181-189.
  30. Stevenson, L.M.; Dickson, H.; Klanjscek, T.; Keller, A.A.; McCauley, E. and Nisbet, R.M., 2013.Environmental feedbacks and engineered nanoparticles: mitigation of silver nanoparticle toxicity to Chlamydomonas reinhardtii by algal produced organic compounds. PLoS One. Vol. 8, No. 9,
    pp: 744-756.
  31. Thomas, S. and Egée, S., 1998. Fish red blood cells: characteristics and physiological role of the membrane ion transporters. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. Vol. 119, pp: 79-86.
  32. Vignesh,V.;Anbarasi,K.F.;Karthikeyeni,S.; Sathiyanarayanan, G.; Subramanian, P. and Thirumurugan, R., 2013. A superficial phyto-assisted synthesis of silver nanoparticles and their assessment on hematological and biochemical parameters in Labeo rohita (Hamilton, 1822). Colloids and Surfaces A: Physicochemical and Engineering Aspects. Vol. 439, pp: 184-192.
  33. Völker, C.; Kämpken, I.; Boedicker, C.; Oehlmann, J. and Oetken, M., 2015. Toxicity of silver nanoparticles and ionic silver: comparison of adverse effects and potential toxicity mechanisms in the freshwater clam Sphaerium corneum. Nanotoxicology. Vol. 9, No. 6, pp: 677-685.
  34. Völker, C.; Gräf, T.; Schneider, I.; Oetken, M. and Oehlmann, J., 2014. Combined effects of silver nanoparticles and 17α-ethinylestradiol on the freshwater mudsnail Potamopyrgus antipodarum. Environmental Science and Pollution Research. Vol. 21, pp: 10661-10670.
  35. Williams, D.; Amman, M.; Autrup, H.; Bridges, J.; Cassee, F.; Donaldson, K.; Fattal, E.; Janssen, C.; De Jong, W.; Jung, T.; Marty, J-P. and Rydzynski K., 2005. The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. In: risks Scoeanih, editor: European commission health and consumer protection directorate general. pp: 1-78.
  36. Woodrow Wilson Database. 2014. Nanotechnology consumer product inventory. http://www.nanotechproject. org/cpi/about/analysis/ accessed at 10/14/2014.
  37. Wu, Y.; Zhou, Q.; Li, H.; Liu, W.; Wang, T. and Jiang, G., 2010. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquatic Toxicology. Vol. 100, pp: 160-167.
  38. Xing, H.; Li, S.; Wang, X.; Gao, X.; Xu, S. and Wang, X., 2013. Effects of atrazine and chlorpyrifos on the mRNA levels of HSP70 and HSC70 in the liver, brain, kidney and gill of common carp. Chemosphere. Vol. 90, pp: 910-916.