The effect of anti-angiogenesis peptides on expression of Caspase-3 and Caspase-9 genes in Balb / c mouse model of breast cancer induced by 4T1 cell line

Document Type : Genetic

Authors

1 Department of Biology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran

2 Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran

3 Department of Biochemistry, Faculty of Basic Sciences, University of Guilan, Rasht, Iran

Abstract

Breast cancer is the most important cancer in the world today, and accounts for 25% of all cases of cancer. In all cancers, including breast cancer, the stages of growth, invasion and metastasis are dependent on several intracellular agents, one of which is the angiogenesis process. The aim of this study was to evaluate the effect of anti-angiogenesis peptides designed to express the Caspase-3 gene and Caspase-9 in Balb / c mice. In this method, the tissue samples of Balb / c mice were previously used, which were previously infected with 4T1 cell-derived mammary tumors (after anesthesia by intraperitoneal injection (IP) for 3 to 5 weeks, their left side adjacent graft was struck). Extraction of TOTAL RNA from tumor samples treated with anti-angiogenesis peptides was performed at concentrations of 1 μg and 10 μg. Synthesis of cDNA was performed to stabilize the RNA molecule. Primers for Real time PCR were designed and synthesized for both Caspase-3 and 9 genes. The primer binding specificity has been confirmed to the pattern string. Statistical analysis was performed using SPSS software. The results of this study showed that there was a significant difference between the treatments of each group of anti-angiogenesis peptides (VEGB1, VEGB2, VEGB3) at concentrations of 1 μg/kg and 10 μg/kg in expression of caspase-3 gene expression (p<0.05). All three anti-angiogenesis peptides can inhibit the VEGFR signaling pathway by regulating caspase-3 and caspase-9 levels, leading to an increase in apoptosis in the tumor.

Keywords


  1. Bhutia, S.K. and Maiti, T.K., 2008. Targeting tumors with peptides from natural sources Trends 9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis in biotechnology. Vol. 26, No. 4, pp: 210-217.
  2. Budihardjo, I.; Oliver, H.; Lutter, M.; Luo, X. and Wang, X., 1999. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. No. 15 pp: 269-90.
  3. Calle, E.E.; Feigelson, H.S.Hildebrand, J.S.Teras, L.R.; Thun, M.J. and Rodriguez, C., 2009. Postmenopausal hormone uses and breast cancer associations differ by hormone. Cancer. Vol. 115, No. 7, pp: 15-87.
  4. Crawford, Y. and Ferrara, N., 2009. VEGF inhibition: insights from preclinical and clinical studies. Cell and Tissue Research. Vol. 335, No.1, pp: 261-269.
  5. Ebos, J.; Lee, C.; Cruz-Munoz, W. and Bjarnason, G., 2009. Accelerated Metastasis after Short-Term Treatment with a Potent Inhibitor of Tumor Angiogenesis. cancer cell. Vol. 15, No. 3, pp: 232-239.
  6. Entezarmahdi, R., 2012. Overview of the National Cancer Control Program Breast of the Islamic Republic of Iran (First and second levels prevention). Arvige Publishing Company pp: 46-70.
  7. Ferrara, N., 2002. VEGF and the quest for tumor angiogenesis factors. Nature Reviews Cancer. 795 p.
  8. Folkman, J., 2010. Angiogenesis an integrative approach from science to medicine. Springer; New York. 601 p.
  9. Hanahan, D. and Folkman, J., 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. cell. Vol. 86, No. 3, pp: 353-364.
  10. Hardwick, J.M. and Soane, L., 2013. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Bio. Vol. 1, No. 2, pp: 5.
  11. Harris, H.R.; Tamimi, R.M.Willett, WC.Hankinson, S.E. and Michels, K.B., 2011. Body size across the life course, mammographic density, and risk of breast cancer. American j of epidemiology. Vol. 174, No. 8, pp: 909-918.
  12. Kilbride, S.M. and Prehn, J.H., 2013. Central roles of apoptotic proteins in mitochondrial function. Oncogene. No. 32, pp: 2703-2711.
  13. Kohler,T.;Schill,C.; Deininger,M.W.; Krahl,R.; Borchert,S.; Hasenclever, D.; Leiblein, S.; Wagner, O. and Niederwieser, D., 2002. High Bad and Bax mRNA expression correlate with negative outcome in acute myeloid leukemia (AML). Leukemia. No. 16, pp: 22-29.
  14. Linderholm, B.K.; Lindahl, T.Holmberg, L.Klaar, S.; Lennerstrand, J.; Henriksson, R. and Bergh, J., 2001. The expression of vascular endothelial growth factor correlates with mutant p53 and poor prognosis in human breast cancer. Cancer Research. Vol. 61, No. 5, pp: 2256-2260.
  15. Liu, Y.; Cox, S.R.Morita, T. and Kourembanas, S., 1995. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5’enhancer. Circulation research. Vol. 77, No. 3, PP: 638-643.
  16. Mylona,E.P.;AlexandrouA.;MpakaliI.;GiannopoulouG.; LiapisS.; MarkakiA.; KeramopoulosL. andNakopoulou, D., 2007. Clinicopathological and prognostic significance of vascular endothelial growth factors (VEGF)-C and-D and VEGF receptor 3 in invasive breast carcinoma. European Journal of Surgical Oncology (EJSO). Vol. 33, No.3, pp: 294-300.
  17. Oberst, A.; Dillon, C.P.; Weinlich, R.; McCormick, L.L.; Fitzgerald, P.; Pop, C.; Hakem, R.; Salvesen, G.S. and Green, D.R., 2011. Catalytic activity of the caspase-8- FLIP (L) complex inhibits RIPK3-dependent necrosis. Nature. No. 471, pp: 363-367.
  18. Okarvi, S.M., 2008. Peptide-based radiopharmaceuticals and cytotoxic conjugates: potential tools against cancer. Cancer Treat. No. 34, pp: 13-26.
  19. Osaki, M.; Oshimura, M. and Ito. H., 2004. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. Vol. 9, No. 6, pp: 667-676.
  20. Park, H.; Ju, E.; Jo, S.; Jung, U.; Kim, S. and Yee, S., 2009. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice. BMC Cancer. pp: 9-85.
  21. Potente, M.; Gerhardt, H. and Carmeliet, P., 2011. Basic and therapeutic aspects of angiogenesis. Cell. No. 146, pp: 873-887.
  22. Sah, N.K.; Khan, Z.; Nelly, M.F.;Pablo, D.M.;Rodriguez, S.S.and Ronell, B.M., 2006.  Structural, functional and therapeutic biology of survivin. Cancer letters. Vol. 244, No. 2, pp: 164-171.
  23. Saladin, P.M.; Zhang, B.D. and Reichert, J.M., 2009. Current trends in the clinical development of peptide therapeutics. IDrugs. Vol. 12, No. 12, pp:779-784.
  24. Salem, L.; ElKholy, S.M. and Al-Atrash, A., 2016. spleen and cancer cells in an experimental mouse model of Ehrlich ascite carcinoma. J of Solid Tumors. Vol. 6, No. 1, pp: 78.
  25. Senger, D.; Brown, L.F.Claffey, K.P. and Dvorak, H.F., 1994. Vascular permeability factor, tumor angiogenesis and stroma generation. Invasion & metastasis.Vol. 14, No .6, pp: 385-394.
  26. Shing, Y.; Folkman, J.Sullivan, R.Butterfield, C.Murray, J. and Klagsbrun, M., 1984. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science. Vol. 223, No. 4642, pp: 1296-1299.
  27. Vecchia, L.C.; Giordano, S.H.;Hortobagyi, G.N. and Chabner, B., 2011. Overweight, obesity, diabetes, and risk of breast cancer: interlocking pieces of the puzzle. The oncologist. Vol. 16, No. 6, pp: 726-729.
  28. Vlieghe, P.; Lisowski, V.; Martinez, J. and Khrestchatisky, M., 2010. Synthetic therapeutic peptides.: science and market. Drug discovery today. Vol. 15, No. 2, pp: 40-56.