اثرات به‌کارگیری سوربات پتاسیم در جیره بیان ژن های مرتبط با رشد در ماهی کپورمعمولی (Cyprius carpio)

نوع مقاله: علوم جانوری

نویسندگان

گروه شیلات، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

این تحقیق با هدف بررسی تأثیر سطوح مختلف نمک سوربات پتاسیم در جیره بر بیان ژن­ های مرتبط با رشد بچه ­­ماهیان کپور معمولی صورت پذیرفت. بدین ­منظور تعداد 168 قطعه ماهی کپور با میانگین وزنی 2/6±15/2 گرم به ­مدت 8 هفته، در چهار تیمار و سه تکرار با جیره ­های آزمایشی حاوی سطوح مختلف صفر (شاهد)، 0/5، 1 و 2 درصد سوربات پتاسیم تغذیه شدند. در پایان دوره از کبد و مغز نمونه ­برداری، استخراج RNA انجام و برای سنتز cDNA از کیت SuPrime Script RTase استفاده ‌شد.cDNA  حاصله با استفاده از پرایمرهای ژن­ های مرتبط با رشد (IGF1 و GH) و ژن بتا­اکتین به ­عنوان ژن رفرنس در Real Time PCR استفاده شد. بیان هر دوژن در تیمارهای تغذیه شده نسبت به تیمار شاهد افزایش یافت. اختلاف معنی‌ داری در میزان بیان ژن GH در تیمارهای تغذیه‌ شده با 1 و 2 درصد نسبت به تیمار 0/5 درصد مشاهده شد (0/05>P). بیان ژن IGF-1 فقط در تیمار 1 درصد اختلاف معنی­ دار با تیمار 0/5 درصد نشان داد (0/05>P). نتایج نشان داد که بهترین عملکرد بیان ژن رشد مربوط به تیمارهای تغذیه ­شده با جیره حاوی 1 درصد سوربات پتاسیم می­باشد و می­ تواند به­ عنوان محرک رشد در جیره غذایی آبزیان استفاده شود.

کلیدواژه‌ها


  1. سیلمانی ایرایی، م.؛ سجادی، م.م.؛ فرحی، ا.؛ کریم‌ زاده، ص. و کرامت ­امیرکلاتی، ع.،1391. اثرات سطوح مختلف مکمل‌های اسیدهای آلی بر کارایی رشد، ترکیبات لاشه و شاخص‌های خونی بچه ماهیان قزل­ آلای رنگین­ کمان (Oncorhyncgus mykiss). مجله بهره ­برداری و پرورش آبزیان. جلد 1، شماره 3، صفحات 10 تا 20.
  2. Baruah, K.; Sahu, N P.; Pal, A.K., Jain, K.K., Debnath, D. and Mukherjee, S.C., 2007a. Dietary microbial phytase and citric acid synergistically enhances nutrient digestibility and growth performance of (Labeo rohita (Hamilton) juveniles at sub-optimal protein level. Aquaculture Research. Vol. 38, pp: 109-120.
  3. Baruah, K.; Sahu, N.P.; Pal, A.K., Debnath, D.; Yengkokpam, S. and Mukherjee, S.C., 2007b. Interactions of dietary microbial phytase, citric acid and crude protein level on mineral utilization by rohu (Labeo rohita (Hamilton)), juveniles. World Aquaculture Society. Vol. 38, pp: 238-249.
  4. Bustin, S.A.; Bens, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; Vandesompele, J. and Wittwer, C.T., 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry. Vol. 55, No. 4, pp: 611-622. 
  5. Canibe, N.; Ricarde, M.E. and Jensen, B.B., 2003. An overview of the effect of organic acid on gut flora and gut health. Danish Institute of Agricultura Sciences, Research Centure Foulum, Denmark. 14 p.
  6. Cummings, J.H.; Pomare, E.W.; Branch, W.J., Naylor, C.P.E. and Macfarlane, G.T., 1987. Shrt cgain fatty acids in human large intestine, potal, hepatic, and venous blood. Gut. Vol. 28, pp: 1221-1227.
  7. Eidelsgurger, U., 1998. Feeding short-chain organic acids to pigs. In: Garnsworthy, P.C., Wiseman, J. (Eds). Recent Advances in Animal Nutrition. Nottingham University press, Noyyingham. pp: 93-106.
  8. Freitag, M., 2007. Organic acids and salts promote performance and health in animal husbandry. In: Luckstadt, C., editor. Acidifiers in Animal Nutrition – A Guide for Feed Preservation and Acidification to Promote Animal Performance. 1st ed, Nottingham University Press, Nottingham, UK. pp: 1-11.
  9. Gislason, G.; Olsen, R.E. and Ringo, E., 1994. Lack of growth-stimulating effect of lctate on Atlantic salmon, L. Aquaculture and Fisheries Management. Vol. 25, pp: 861-862.
  10. Hossain, M.A.; Pandey, A. and Satoh, S., 2007. Effects of organic acids on growth and phosphorus utilization in red sea bream Pagrus major. Fisheries Science. Vol. 73, pp:1309-1317.
  11. Hoseinifar, S.H. and Romano, N., 2017. Comparing the effects of different dietary organic acids on the growth, intestinal short-chain fatty acids, and liver histopathology of red hybrid tilapia (Oreochromis sp.) and potential use of these as preservatives. Fish Physiology and Biochemistry. Vol. 11, pp: 1-13.
  12. Khajepour, F. and Hosseini, S.A., 2012. Citric acid improves growth performance and phosphorus digestibility in Beluga (Huso huso) fed diets where soybean meal partly replaced fish meal. Animal Feed Science and Technology. Vol.171, pp: 68-73.
  13. Katoh, K.; Ohata, Y. and Ishiwata, H., 1999. Suppressing effects of short-chain fatty acids on growth hormone (GH) relesing hormone- induced GH release in isplated anterior pituitary cells of goals. Domestic animal Endocrinology. Vol. 17, No. 1, pp: 85-93.
  14. Koh, C.B.; Romano, N.; Siti-Zahrah, A. and Ng, W.K., 2016. Effects of a dietary organic acids blend and oxytetracycline on the growth, nutrient utilization and total cultivable gut microbiota of the red hybrid tilapia, Oreochromis sp., and resistance to Strepto coccus agalactiae. Aquaculture Research. Vol. 47, pp: 357-369.
  15. Lim, C.; Klesius, P.H.; Li, M.H. and Robinson, E.H., 2000. Interaction between dietary levels of iron and vitamin C on growth, hematology, immune response and resistance of channel catfish (Ictalurus punctatus) to Edwardsiella ictaluri challenge. Aquaculture. Vol. 185, pp: 313-327.
  16. Liu, W.; Yang Y.; Zhang, J.; Gatlin, D.M.; Ringo, E. and Zhou, Z., 2014. Effects of dietary microencapsulated sodium butyrate on growth. Intestinal mucosal morphology, immune responde and adhesive bacteria in juvenile common carp (Cyprinus carpio) pre-fed with or without oxidized oil.  British Journal of Nutrition. Vol. 112, pp: 15-29.
  17. Luckstadt, C., 2008. The use of acidifiers in fish nutrition. CAB Reviews: Perspectives in Agriculture, Veterinary Science. Nutrition and Natural Resources. Vol. 44, pp: 1-8.
  18. Macfarlane, S. and Macfarlane, G.T., 2003. Regulation of short-chain fatty acid production. Proceeding of Nutritional Society. Vol. 62, pp: 67-72.
  19. Ng, W.K.; Koh, C.B.; Sudesh, K. and Siti-Zahrah, A., 2009. Effects of dietary organic acids on growth, nutrient digestibility and gut microflora of red hybrid tilapia, (Oreochromis sp) and subsequent survival during a challenge test with (Streptococcus agalactiae). Aquaculture Research. Vol. 40, pp: 1490-1500.
  20. Ng, W.K. and Koh, C.B., 2011. Application of organic acid in aquafeeds: impacts on fish growth C (ed). Standards for Acidifiers principles for the Use of Organic Acids in Animal Nutrotion. Proceeding of the Ist International Acidifier summit. Nottingham University press, Nottingham. pp: 46-58.
  21. Owen, M.A.G.; Waines, P.; Bradley, G. and Davies, S., 2006. The effect of dietary supplementation of sodium butyrate on the growth and microflora of (Clarias gariepinus) (Burchell 1822). Abstract from the12 th International Symposium Fish Nutrition and Feeding. Biarritz, France.
  22. Pandey, A. and Satoh, S., 2008. Effects of organic acids on growth and phosphorus utilization in rainbow trout (Oncorhynchus mykiss). Fisheries Science. Vol. 74, pp: 867-874.
  23. Ramli, N.; Heindl, U. and Sunanto, S., 2005. Efect of potassium diformate on growth performance of tilapia challenged with Vibrio anguillarum. Abstract, World Aquaculture, Bali, Indonesia.
  24. Ringo, E., 1991. Effects of dietary lactate and propionate on growth and digesta in Arctic charr, Salvelinus alpinus (L). Aquaculture. Vol. 96, pp: 321-333.
  25. Ringo, E.; Olsen, R.E. and Castell, J.D., 1994. Effect of dietary lactate on growth and chemical composition of Arctic charr Salvelinus alpinus. Jornal of the Word Aqucalture Society. Vol. 25, pp: 483-486.
  26. Robels, R.; Lozano, A.B.; Sevilla, A.; Marquez, L.; Nuez Ortin, W. and Moyano, F.J., 2013. Effectvof partially protected buturate used as feed additive on growth and intestinal metabolism in sea bream (Sparus aurata). Fish physiology and Biochemistry. Vol. 39, pp: 1567-1580.
  27. Roe, A.J.; McLaggan, D.; Davidson, I.O.;Byrne, C. and Brooth, I.R., 1998. Perturbation of anion balance during inhibition of growth of Escherichia coli by week acids. Journal of Bacteriology. Vol. 180, pp: 77-72.
  28. Romano, N.; Koh, C.B. and Ng, W.K., 2015. Dietary microencapsulated organic acids blend enhances growth, phosphorus utilization, immune response, hepatopancreatic integrity and resistance against Vibrio harveyi in white shrimp, Litopenaeus vannamei. Aquaculture. Vol. 435, pp: 228-236.
  29. Safari, R.; Hoseinifar, S.H.; Nejadmoghadam, S.H. and Jafar, A., 2008. Transciptomic study of mucosal immune, antioxidant and growth related genes and non-specific immune response of common carp (Cyprinus carpio) fed dietary Ferula (Ferula assafoetida). Fish and Shellfish Immunology. Vol. 55, pp: 242-248.
  30. Safari, R.; Hoseinifar, S.H.; Nejadmoghadam, S.H. and Khalil, M., 2017. Non-specific immune parameters, immune, antioxidantand growth-related genes expression of common carp (Cyprinus carpio) fed sodium propionate. Aquaculture Research. Vol. 5, pp: 1-9.
  31. Safari, A.R.; Hoseinifar, S.H. and Kavandi, M., 2016. Modulation of antioxidant defense and immune response in zebra fish (Danio rerio) using dietary sodium propionate. Fish Physiology and Biochemistry. Vol. 10, pp: 10-20.
  32. Silva, B.C.; Vieria, F.N.; Mourino, J.L.P.; Blivar, N. and Seiffert, W.Q., 2016. Butyrate and prppionate improve the growth performance of Litopenaeus vannamei. Aquacalture Research. Vol. 47, pp: 612-620.
  33. Winton, J.R., 2001. Fosh health management. In: Wedemeyer, G., 2001. Fish hatchery management 2nd edition. Bethesda, M.D, American Fisheries Society. Vol. 10, pp: 559-639.