تعیین اسیدآمینه های آزاد در ژله رویال، گرده زنبورعسل و گرده زنبور هیدرولیز شده

نوع مقاله: علوم جانوری

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه شیمی مواد غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

از میان محصولات مختلف گیاهی، محصولات زراعی و باغی مانند دانه­ های گرده به­ طور عمده به ­عنوان مواد دارویی و مکمل­ های غذایی به ­علت وجود مواد مغذی ضروری مثل اسیدآمینه، پروتئین، فلاونوئیدها و آلکالوئیدها به ­طور گسترده ­ای استفاده می­ شود. اسیدآمینه ­های ژله رویال طیف گسترده ­ای از عملکردهای دارویی و سلامت­ بخشی را در انسان دارند. مطالعه حاضر با هدف تعیین اسیدآمینه­ های آزاد ژله رویال، گرده زنبور عسل و گرده زنبور هیدرولیز شده می ­باشد. نتایج نشان داد که پرولین، لیزین، آسپارتیک اسید، گلوتامیک اسید، سرین و بتاآلانین اسیدآمینه ­های آزاد عمده در ژله رویال بودند.در این آزمایش مشخص شد که اسیدآمینه­ های آزاد آسپارتیک اسید، گلوتامیک اسید، آلانین، پرولین، تایروزین، متیونین، لوسین و ایزولوسین در گرده زنبورعسل وجود داشتند. مشخص شد که سه اسیدآمینه آزاد، آسپارتیک اسید، گلوتامیک اسید و پرولین در تمام نمونه­ های مورد مطالعه وجود داشتند. در این آزمایش گرده زنبورعسل هیدرولیز شده با آنزیم آلکالاز دارای بیش ­ترین تعداد آمینواسید آزاد (22 اسیدآمینه) بود. علاوه بر اسیدآمینه­ های آزاد موجود در ژله رویال، گرده و گرده هیدرولیز شده زنبورعسل اسیدآمینه­ های آزاد دیگری نیز در کروماتوگرام­ ها وجود داشتند که نمی ­توان با اسید آمینه­ های استاندارد شناسایی کرد و به­ عنوان اسیدآمینه­ های آزاد ناشناخته درنظر گرفته شدند.

کلیدواژه‌ها


  1. Bogdanov, S., 2014. Royal Jelly, Bee Brood: Composition, Health, Medicine: A Review. Bee Product Science. Vol.28, No. 3, pp: 118-153.
  2. Boselli, E.; Caboni, M.; Sabatini, A.G.;  Marcazzan, G.L. and Lercker, G., 2003. Determination and changes of free amino acids in royal jelly during storage. Apidologie. Vol. 34, No. 2, pp: 129-137.
  3. Crailsheim, K. and Leonhard, B., 1997. Amino Acids. Vol. 13, 141 p.
  4. Crenguţa, L.P.; Liviu, A.l.; Mărghitaş, O.; Daniel, S.; Dezmirean, A.; Şapcaliu, I.R. and Mariana, N., 2011. Biological Activities of Royal Jelly, Review. Animal Science and Biotechnologies. Vol. 44, No. 2, pp: 108-118.
  5. De Groot, A.P., 1953. Protein and amino acid requirements of the honey bee (Apis mellifera L.). Physiologia Comparataet Oecologia. Vol. 3, pp: 197-285.
  6. Estevinho, L.M.; Rodrigues, S.; Pereira, A.P. and Feás, X., 2012. Portuguese bee pollen: Palynological study nutritional and microbiological evaluation. International Journal of Food Science and Technology. Vol.47, pp: 429-435.
  7. Gonzalez-paramas, A.M.; Alfonso, G.B.J.; Cordon, M.C.; Garcia-Villanova, R.J. and Sánchez, J.S., 2006. HPLC fluorimetric method for analysis of amino acids in products of the hive (honey and bee-pollen). Food Chemistry. Vol. 95, pp: 148-156.
  8. Guo, H.; Kozuma, Y. and Yonekura, M., 2005. Isolation and properties of antioxidative peptides from water-soluble royal jelly protein hydrolysate. Food Science Technology Research. Vol. 11, pp: 222-230.
  9. Ismile, H.; Talukder, G.; Roy, N. and Shaha, R.K., 2012. Analysis of the free amino acid content in pollen of Bangladeshi common fruits flower of known allergenic activity. Agricultural Science Research Journal. Vol. 2, No. 3, pp: 11-16.
  10. Jamdar, S.N.; Rajalakshmi, V.; Pednekar, M.D.; Juan, F. and Arun Sharma, V.Y., 2010. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitor activity of peanut protein hydrolysate. Food Chemistry. Vol.121, pp: 178-184.
  11. Je, J.Y.; Lee, M.H.; Lee, K.H. and Ahn, C.B., 2009. Antioxidant and hypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International. Vol. 42, pp: 1266-1272.
  12. Khantaphant, S. and Benjakul, S., 2008. Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comparative Biochemistry and Physiology. Vol: 151, pp: 110-115.
  13. Kim, V.T.; Glerum. C.; Stoddart, J. and Columbo, S.J., 1987. Effect of fertilization on free amino acid concentration in black spruce and jack pine containerized seedlings. Can. J. For. Res. Vol. 17, pp: 27-30.
  14. Lassoued, I.; Mora, L.; Barkia, A.; Aristoy, M.C.; Nasri, M. and Toldra, F., 2015. Bioactive peptides identified in thornback ray skin's gelatin hydrolysates by proteases from Bacillus subtilis and Bacillus amyloliquefaciens. Journal of Proteomics, Vol. 128, pp:8-17.
  15. Liming, W.; Jinhui, Z.; Xiaofeng, X.; Yi, L. and Jing, Z.J., 2009. Food Comp. Anal. Vol. 22, 242 p.
  16. Matsuoka, T.; Kawashima, T.; Nakamura, T.; Kanamaru, Y. and Yabe, T., 2012. Isolation and characterization of proteases that hydrolyze royal jelly proteins from queen bee larvae of the honeybee, Apis mellifera. Apidologie. Vol: 43, pp: 685-697.
  17. Miyamoto, M.; Tsumura, K.; Kimura, M.; Okihara, S.; Sugimoto, H. and Yamada, H., 2004. N-glycans bearing beta-1,3-galactosyl residue in royal jelly glycoproteins. Glycobiology. Vol. 14, No. 11, pp: 241.
  18. Morais, M.; Moreira, L.; Feás, X. and Estevinho, L.M., 2011. Honeybee-collected pollen from five portuguese natural parks: Palynological origin phenolic content antioxidant properties and antimicrobial activity. Food and Chemical Toxicology. Vol. 49, pp: 1096-1101.
  19. Nicolson, S.W. and Human, H., 2013. Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus L., Asteraceae). Apidologie. Vol. 44, pp: 144-152.
  20. Oveisi pour, M.; Abedian, A.M.; Motamedzadegan, A.; Rasco, B.; Safari, R. and Shahiri, H., 2009. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from the Persian sturgeon (Acipenser persicus) viscera. Food Chemistry. Vol. 115, pp: 238-242.
  21. Pascoal, A.; Rodrigues, S.; Teixeira, A.; Feás, X.L. and Estevinho, M., 2013. Biological activities of commercial bee pollens: antimicrobial, antimutagenic, antioxidant and anti inflammatory. Food and Chemical Toxicology. Vol. 45, pp: 121-130.
  22. Pedroche, J.; Yust, M.M.; Lqari, H.; Megias, C.; Giro´ n Calle, J.; Alaiz, M.; Vioque, J. and Millan, F., 2007. Obtaining of Brassica carinataproteinhydrolysates enriched in bioactive peptides using immobilized digestive proteases. Food Research International. Vol. 40, pp: 931-938.
  23. Polgár, L., 1987. Structure and function of serine proteases. In:  New ComprehensiveBiochemistry, Neuberger, A. and Brocklehurst, K., Ed. Vol. 16, pp: 1-423.
  24. Power, O.; Jakeman, P. and FitzGerald, R., 2013. Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids. Vol. 44, No. 3, pp: 797-820.
  25. Pownall, T.L.; Udenigwe, C.C. and Aluko, R.E., 2010. Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions. Journal of agricultural and food chemistry. Vol. 58, No. 8, pp: 4712-4718.
  26. Ramadan, M.F. and Al-Ghamdi, A., 2012. Bioactive compounds and health-promoting properties of royal jelly: A review. Journal of  Functional Foods. Vol. 4, pp: 39-52.
  27. Villanueva, A.; Vioque, J.; Sánchez-Vioque, R.; Clemente, A.; Pedroche, J.; Bautista, J. and Millán, F., 1999. Peptide Characteristics of Sunflower Protein Hydrolysates. Journal of the American Oil Chemists Society. Vol. 76, pp: 1455-1460.