پرورش آرتمیا فرانسیسکانا (Artemia franciscana) تحت سیستم مداربسته با استفاده از فناوری بیوفلاک و اثرات آن بر عملکرد رشد و تولیدمثلی آرتمیا و بار باکتریایی آب

نوع مقاله : تغذیه

نویسندگان

1 گروه شیلات، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی، گرگان، ایران

2 گروه شیلات، پژوهشکده آرتمیا و آبزی‌پروری، دانشگاه ارومیه، ارومیه، ایران

3 آزمایشگاه مرجع مرکزی آبزی پروری و آرتمیا، دانشگاه گنت، گنت، بلژیک

چکیده

این آزمایش در یک سیستم مداربسته انجام شد. بیوفلاک در یک مخزن 7 لیتری تولید شده و توسط پمپ به ­مقدار مساوی به سه مخزن مجزا پمپ و سه مخزن پرورش به ­عنوان سه تکرار درنظر گرفته و آزمایش تغذیه ­ای آرتمیا با 3 تیمار تحت عنوان تیمارهای غذای زیر به ­مدت 21 روز انجام گرفت. تیمار 1: بیوفلاک ایجاد شده با ملاس+جلبک دونالیلا (%5 نیاز غذایی آرتمیا)، تیمار 2: بیوفلاک ایجاد شده با رافینات+جلبک دونالیلا (%5 نیاز غذایی آرتمیا)، تیمار3: (شاهد): تغذیه با سبوس برنج و مخمر+جلبک دونالیلا. در این آزمایش حجم فلاک، شمارش بار باکتریایی، رشد آرتمیا ، بقا و تولیدمثل آرتمیا در تیمارهای مختلف مورد بررسی قرار گرفت. طبق نتایج، رافینات توانست در طول دوره آزمایشی به ­طور معنی ­داری روند تولید بیوفلاک را نسبت به تیمار ملاس افزایش دهد، ملاس به ­طور معنی ­داری باعث افزایش تعداد باکتری­ های هتروتروفیک و افزایش بار قارچی سیستم شد، رشد در تیمارهای تغذیه شده نسبت به شاهد، کاهش معنی­ دار داشت (0/05>P)، هم ­آوری نیز در تیمار ملاس نسبت به گروه شاهد کاهش معنی دار داشت. با توجه به نتایج حاصله ملاس و رافینات به ­عنوان منبع کربن می ­توانند باعث تولید آرتمیا با کیفیت قابل قیاس با آرتمیای پرورش یافته با غذای تجاری را با هزینه کم ­تر تولید کنند، البته طبق یافته ­های تحقیق رافینات به ­دلیل نسبت کربن به ازت کم نمی ­تواند پیشنهاد خوبی جهت استفاده به ­عنوان تنها منبع کربن باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Artemia franciscana culture by recirculation system using biofloc technology and its effects on growth and reproductive performance

نویسندگان [English]

  • Behrang Daneshkhah 1
  • Mohammad Sudagar 1
  • Naser Agh 2
  • Gilbert Van Stappen 3
1 Department of Fisheries, Faculty of Fisheries and Environment, University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Department of Fisheries, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
3 Laboratory of Aquaculture and Artemia Reference Center University of Ghent, Ghent, Belgium
چکیده [English]

The aim of this study was to evaluate the effects of molasses and raffinate as carbon source on quantity of biofloc, in this study Molasses and Rafinat were used as carbon sources of the biofloc system, also a diet contains rice bran and yeast set as control. Bioflocs were grown in 7 L reactors for 22 days on the following carbonaceous substrates: molasses and rafinat, and the produced biofloc was used in artemia diet in three nutritional treatments for 21 day, Treatment1: Biofloc produced by molsses+Dunaliella  (% 5 of nutritional requirement of Artemia),Treatment2: Biofloc produced by rafinat+Dunaliella (% 5 of nutritional requirement of Artemia),Treatment3: Rice bran and yeast+Dunaliella; some parameters like biofloc volume growth and survival indices and reproductive performance of Artemia and microbial load of water was measured. According to obtained results, raffinate could significantly enhance floc volume during the experimental period, molasses significantly increase the dominance of heterotrophic bacteria and fungi, the obtained result has shown that the molasses and rafinat can enhance physicochemical parameters of water, and that can use to produce artemia with the comparability quality with artemia cultured with commercial food, and molasses and raffinate can use as carbon sources in the biofloc system to reach cheaper products, anyway we cant recommend raffinate as individual carbon source in biofloc system to enhance water quality due to the low C:N ratio.

کلیدواژه‌ها [English]

  • Biofloc
  • Molasses
  • Raffinate
  • Artemia
  • Bacterial community
  • Microbial load
  1. اخوت، م.، 1378. شناسایی ارقام برنج ایران، کاشت، داشت و برداشت برنج، نشر علوم کشاورزی. صفحات 120 تا 141.
  2. زارعی ­دارکی، ب.، 1390. جلبک ­های اکوسیستم­ های آبی ایران. انتشارات پیام علوی. 323 صفحه.
  3. Aguilera-Rivera, D.; Prieto-Davó, A.; Escalante, K.; Chávez, C., Cuzon, G. and Gaxiola, G., 2014. Probiotic effect of FLOC on Vibrios in the pacific white shrimp Litopenaeus vannamei. Aquaculture. Vol. 424, pp: 215-219.
  4. Avnimelech, Y., 1999. Carbon and nitrogen ratio as a control element in aquaculture systems. Aquaculture. Vol. 176, pp: 227-235.
  5. Avnimelech, Y., 2007. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture. Vol. 264, No. 1-4, pp: 140-147.
  6. Avnimelech, Y., 2012. Biofloc Technology-a Practical Guide Book. 2nd ed. The World Aquaculture Society, Baton Rouge, United States. Birmingham, Birmingham magazine. pp: 249-271.
  7. Avnimelech, Y. and Ritvo, G., 2003. Shrimp and fish pond soils: processes and management. Aquaculture. Vol. 220, No. 1-4, pp: 549-567.
  8. Barnett, J.A., 1975. The entry of D-ribose into some yeasts of the genus Pichia. Microbiology. Vol. 90, No. 1, pp: 1-12.
  9. Bender, J.; Lee, R.; Sheppard, M.; Brinkley, K.; Phillips, P.; Yeboah, Y. and Wah, R.C., 2004. A waste effluent treatment system based on microbial mats for black sea bass Centropristis striata recycled water mariculture. Aquacultural engineering. Vol. 31, No. 1-2, pp: 73-82.
  10. Boone, E. and Baas-Becking, L.G.M., 1931. Salt effects on eggs and nauplii of Artemia salina L. The Journal of general physiology. Vol. 14, No. 6, pp: 753-763.
  11. Boone, E., 1931. experimental intensive culture. Italian Journal of Animal Science. Vol. 14, pp: 332-337. DOI: 10.4081/ijas.2015.3726.
  12. Burford, M.A.; Thompson, P.J.; McIntosh, R.P.; Bauman, R.H. and Pearson, D.C., 2003. Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture. Vol. 219, pp: 393-411.
  13. Crab, R.; Avnimelech, Y.; Defoirdt, T.; Bossier, P. and Verstraete, W., 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture. Vol. 270, No. 1-4, pp: 1-14.
  14. Chen, S.; Ling, J. and Blancheton, J.P., 2006. Nitrification kinetics of biofilm as affected by water quality factors. Aquacultural engineering. Vol. 34, No. 3, pp: 179-197.
  15. Coutteau, P.; Brendonck, L.; Lavens, P. and Sorgeloos, P., 1992. The use of manipulated baker's yeast as an algal substitute for the laboratory culture of Anostraca. Hydrobiologia. Vol. 234, No. 1, pp: 25-32.
  16. Ebeling, J.M.; Timmons, M.B. and Bisogni, J.J., 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture.  Vol. 257, No. 1-4, pp: 346-358.
  17. Ekasari, J.; Crab, R. and Verstraete, W., 2010. Primary nutritional content of bio-flocs cultured with different organic carbon sources and salinity. Hayati Journal of Biosciences. Vol. 17, No. 3, pp: 125-130.
  18. González, M.A.; Coleman, A.W.; Gómez, P.I. and Montoya, R., 2001. Phylogenetic relationship among various strains of Dunaliella (Chlorophyceae) based on nuclear ITS rDNA sequences. Journal of Phycology. Vol. 37, No. 4, pp: 604-611.
  19. Guevara, M.; Lodeiros, C.; Gómez, O.; Lemus, N.; Núñez, P.; Romero, L., Vásquez, A. and Rosales, N., 2005: Carotenogénesis de cinco cepas del alga Dunaliella sp. (Chlorophyceae) aisladas de lagunas hipersalinas de Venezuela. Revista de Biología Tropical. Vol. 53, No. 5-4, pp: 331-337.
  20. Hossain, M.A. and Paul, L., 2007. Low‐cost diet for monoculture of giant freshwater prawn (Macrobrachium rosenbergii de Man) in Bangladesh. Aquaculture Research. Vol. 38, No. 3, pp: 232-238.
  21. Irasema, E.L.; Domenico, V.; Juan, M.A.N.; María, R.P.M.; Víctor, H.E. and Emilio, R.B., 2015. Effects of biofloc promotion on water quality, growth, biomass yield and heterotrophic community in Litopenaeus vannamei.
  22. Jin, W. and Wankat, P.C., 2007. Hybrid simulated moving bed processes for the purification of p‐xylene. Separation Science and Technology. Vol. 42, No. 4, pp: 669-700.
  23. Logan, W.T.; Bartlett, S.L.; Logan, Walter T.; Bartlett, B. and Stephen, L., 1998. Water treatment with large numbers of non-pathogenic bacteria to improve yield of aquatic animals. U.S. Patent. Vol. 5, pp: 155-746.
  24. Lulijwa, R.; Van Stappen, G. and Nguyen, V.H., 2013. Effect of carbon/nitrogen ratio ma nipulation in feed supplements on Artemia production and water quality in solar salt ponds in the Mekong Delta, Vietnam. Aquaculture Reserch. pp: 1-7.
  25. Mason, D.T., 1963. The growth response of Artemia salina (L.) to various feeding regimes. Journal of Crustaceana. Vol. 5, pp: 138-150.
  26. Moffitt, C.M. and Cajas-Cano, L., 2014. Blue growth: the 2014 FAO state of world fisheries and aquaculture. Fisheries. Vol. 39, No. 11, pp: 552-553.
  27. Naegel, L.C., 1999. Controlled production of Artemia biomass using an inert commercial diet, compared with the microalgae Chaetoceros. Aquacultural engineering. Vol. 21, No. 1, pp: 49-59.
  28. Naylor, R.L.; Naylor, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H. and Troell, M., 2000. Effect of aquaculture on world fish supplies. Nature. Vol. 405, No. 6790, 1017 p.
  29. Phadwal, K. and Singh, P.K., 2003. Isolation and characterization of an indigenous isolate of Dunaliella sp. for β‐carotene and glycerol production from a hypersaline lake in India. Journal of Basic Microbiology: An International Journal on Biochemistry, Physiology, Genetics, Morphology, and Ecology of Microorganisms. Vol. 43, No. 5, pp: 423-429.
  30. Piedrahita, R.H., 2003. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture. Vol. 226, No. 1-4, pp: 35-44.
  31. Raja, R.; Hemaiswarya, S. and Rengasamy, R., 2007. Exploitation of Dunaliella for β-carotene production. Applied Microbiology and Biotechnology. Vol. 74, No. 3, pp: 517-523.
  32. Schneider, O., 2005. Analysis of nutrient flows in integrated intensive aquaculture systems. Aquacultural Engineering, Oxford. Vol. 32, No. 3-4, pp: 379-401.
  33. Sorgeloos, P.; Lavens, P.; Leger, P.; Tackaert, W. and Versichele, D., 1986. Manual for the culture and use of brine shrimp Artemia in aquaculture.
  34. Soder, K.J.; Hoffman, K. and Brito, A.F., 2010. Effect of molasses, corn meal, or a combination of molasses plus corn meal on ruminal fermentation of orchardgrass pasture during continuous culture fermentation. The Professional Animal Scientist. Vol. 26, No. 2, pp: 167-174.
  35. Sui, L.Y.; Wang, J.; Nguyen, V.H.; Sorgeloos, P.; Bossier, P. and Van Stappen, G., 2013. Increased carbon and nitrogen supplementation in Artemia culture ponds results in higher cyst yields. Aquaculture international. Vol. 21, No. 6, pp: 1343-1354.
  36. Tacon, A.G.J., 1987. The nutrition and feeding of farmed fish and shrimp. A training manual 1 - The essential nutrients. FAO, Rome.
  37. Torres-Beristain, B.; Verdegem, M.; Kerepeczki, E. and Verreth, J., 2006. Decomposition of high protein aquaculture feed under variable oxic conditions. Water research. Vol. 40, No. 7, pp: 1341-1350.
  38. Trenkenshu, R.P.; Gevorgiz, R.G. and Borovkov, A.B., 2005. The experience of industrial cultivation Dunaliella salina. Sevastopol. pp: 90-97.
  39. Van Stappen, G., 1996. Use of cysts. In Manual on the production and use of live food for aquaculture. Vol. 361, pp: 107-136.
  40. Vayalil, P., 2012. Critical reviews in food science and nutrition, date fruits (Phoenix dactylifera Linn): An emerging medicinal food. Department of Pathology, University of Alabama.