تاثیر میکروجلبک اسپیرولینا و پروبیوتیک باسیلوس سوبتیلیس بر خصوصیات لاشه، مورفولوژی روده و فراسنجه ‏های خون جوجه های گوشتی

نوع مقاله : تغذیه

نویسندگان

گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

 این آزمایش به ­منظور مقایسه اثر افزودن میکروجلبک اسپیرولینا و پروبیوتیک باسیلوس سوبتیلیس در جیره بر خصوصیات لاشه، ریخت‏ شناسی پرزهای روده و فراسنجه‏ های خون جوجه ‏های گوشتی انجام شد. تعداد 300 قطعه جوجه نر یک‏روزه نژاد راس 308 در قالب طرح کاملاً تصادفی با آرایش فاکتوریل 2×3 شامل سه سطح افزودنی اسپیرولینا پلاتنسیس (0، 0/05 و 0/1 درصد از جیره) و دو سطح افزودنی پروبیوتیک (0 و 0/05 درصد از جیره) درون 30 قفس زمینی توزیع و به مدت 24 روز پرورش یافتند. مصرف مخلوط 0/1 درصد اسپیرولینا و پروبیوتیک توانست وزن نسبی چربی حفره شکمی را در مقایسه با پرندگان تیمار حاوی 0/1 درصد اسپیرولینا و فاقد پروبیوتیک کاهش دهد. مصرف تیمار حاوی پروبیوتیک و فاقد اسپیرولینا سبب افزایش طول پرزها و نسبت طول پرز به عمق کریپت‏ های دئودنوم در مقایسه با تیمار فاقد این افزودنی‏ ها شد (0/05>P). در ژژونوم، تیمار مخلوط 0/05 درصد اسپیرولینا و پروبیوتیک طول پرزها را در مقایسه با تیمار حاوی فقط پروبیوتیک افزایش داد (0/05>P). افزودن اسپیرولینا یا پروبیوتیک توانست سبب کاهش درصد هتروفیل و نسبت هتروفیل به لمفوسیت در خون جوجه‏ های گوشتی شود (0/05>P). نتایج این آزمایش نشان داد که مصرف اسپیرولینا، به ویژه سطح 0/1 درصد،  به تنهایی و یا همراه با پروبیوتیک می ‏تواند سبب بهبود کیفیت لاشه و خصوصیات پرزهای روده شود. هم­ چنین با توجه به تغییرات فراسنجه ‏های خونی، هریک از این افرودنی‏ ها جهت بهبود سلامت جوجه‏ های گوشتی قابل توصیه هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of microalgae Spirulina and Bacillus subtilis on carcass characteristics, intestinal morphology and blood parameters of broiler chickens

نویسندگان [English]

  • Mahboobullah Joya
  • Omid Ashayerizadeh
  • Behrouz Dastar
Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

   This experiment was performed to compare the effect of adding microalgae Spirulina and probiotic Bacillus subtilis in the diet on carcass characteristics, intestinal morphology and blood parameters of broiler chicks. A total of 300 Ross one-day-old Ross 308 male broiler chicken were randomly distributed in a completely randomized design with 3 × 3 factorial arrangement including three levels of Spirulina platensis (0, 0.05 and 0.1% of diet) and two levels of probiotic (0 and 0.05% of the diet) and reared for 24 days. The mixture of 0.1% spirulina and probiotic decreased the relative weight of abdominal fat pad when compared to the treatment provided with 0.1% spirulina and without probiotic. The use of probiotic diet (without spirulina) increased the duodenal villus height and the ratio of villus height to crypt depth compared to the treatment without these additives (P <0.05). In the jejunum, the mixture of 0.05% Spirulina and probiotics increased the villus height than the treatment containing only probiotic (P <0.05). Supplementing of spirulina or probiotic can reduce heterophil count and the heterophile to lymphocyte ratio in the boold of broiler chickens (P< 0.05). The results of this experiment showed that spirulina, especially 0.1% level, alone or in combination with probiotic, can improve carcass quality and intestinal mophology. Also, due to the beneficial changes in blood parameters, each of these additives could be recomendable to improve the health of broiler chickens.

کلیدواژه‌ها [English]

  • Broiler chicken
  • Spirulina
  • Probiotic
  • Intestinal villus
  • Blood lipid
  1. Allahdo, P.; Ghodraty, J.; Zarghi, H.; Saadatfar, Z.; Kermanshahi, H. and Edalatian Dovom, M.R., 2018. Effect of probiotic and vinegar on growth performance, meat yields, immune responses, and small intestine morphology of broiler chickens. Italian Journal of Animal Science. Vol. 17, pp: 675-685.
  2. Apata, D.F., 2008. Growth performance, nutrient digestibility and immune response of broiler chicks fed diets supplemented with a culture of Lactobacillus bulgaricus. Journal of the Science of Food and Agriculture. Vol. 88, pp: 1253-1258.
  3. Awad, W.A.; Ghareeb, K.; Abdel-Raheem, S. and Bohm, J., 2009. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry science. Vol. 88, pp: 49-56.
  4. Bai, K.; Huang, Q.; Zhang, J.; He, J.; Zhang, L. and Wang, T., 2017. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poultry science. Vol. 96, No. 1, pp: 74-82.
  5. Beheshtipour, H.; Mortazavian, A.M.; Mohammadi, R.; Sohrabvandi, S. and Khosravi-Darani, K., 2013. Supplementation of Spirulina platensis and Chlorella vulgaris Algae into probiotic fermented milks. Comprehensive Reviews in Food Science and Food Safety. Vol. 12, No. 2, pp: 144-154.
  6. Campo, J.L. and Davila, S.G., 2002. Effect of photoperiod on heterophil to lymphocyte ratio and tonic immobility duration of chickens. Poultry science. Vol. 81, pp: 1637-1639.
  7. Cotter, P.F., 2015. An examination of the utility of heterophil-lymphocyte ratios in assessing stress of caged hens. Poultry science. Vol. 94, pp: 512-517.
  8. de Jesus Raposo, M.F.; de Morais, A.M. and de Morais, R.M., 2016. Emergent Sources of Prebiotics: Seaweeds and Microalgae. Mar Drugs. Vol. 14, 27 p.
  9. Deng, R. and Chow, T.J., 2010. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovascular therapeutics. Vol. 28, No. 4, pp: e33-e45.
  10. FAO/WHO. 2001. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, American Córdoba Park Hotel, Córdoba, Argentina.
  11. Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; Verbeke, K. and Reid, G., 2017. Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature reviews. Gastroenterology & hepatology. Vol. 14, pp: 491-502.
  12. Haldar, S.; Ghosh, T.K.; Toshiwati and Bedford, M.R., 2011. Effects of yeast (Saccharomyces cerevisiae) and yeast protein concentrate on production performance of broiler chickens exposed to heat stress and challenged with Salmonella enteritidis. Animal Feed Science and Technology. Vol. 168, pp: 61-71.
  13. Hou, T. and Tako, E., 2018. The In Ovo Feeding Administration (Gallus Gallus)-An Emerging In Vivo Approach to Assess Bioactive Compounds with Potential Nutritional Benefits. Vol. 10, 418 p.
  14. Jayaraman, S.; Thangavel, G.; Kurian, H.; Mani, R.; Mukkalil, R. and Chirakkal, H., 2013. Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poultry science. Vol. 92, pp: 370-374.
  15. Kabell, S.; Igyarto, B.Z.; Magyar, A.; Hajdu, Z.; Biro, E.; Bisgaard, M. and Olah, I., 2006. Impact of heterophil granulocyte depletion caused by 5-fluorouracil on infectious bursal disease virus infection in specific pathogen free chickens. Avian pathology : journal of the W.V.P.A. Vol. 35, pp: 341-348.
  16. Khatibjoo, A.; Mahmoodi, M.; Fattahnia, F.; Akbari-Gharaei, M.; Shokri, A.N. and Soltani, S., 2018. Effects of dietary short- and medium-chain fatty acids on performance, carcass traits, jejunum morphology, and serum parameters of broiler chickens. Journal of Applied Animal Research. Vol. 46, pp: 492-498.
  17. Kordowska-Wiater, M.; Wasko, A.; Polak-Berecka, M.; Kubik-Komar, A. and Targonski, Z., 2011. Spirulina enhances the viability of Lactobacillus rhamnosus E/N after freeze-drying in a protective medium of sucrose and lactulose. Letters in applied microbiology. Vol. 53, pp: 79-83.
  18. Li, C.l.; Wang, J.; Zhang, H.j.; Wu, S.G.; Hui, Q.R.; Yang, C.B.; Fang, R.j. and Qi, G.H., 2019. Intestinal Morphologic and Microbiota Responses to Dietary Bacillus spp. in a Broiler Chicken Model. Frontiers in Physiology. Vol. 9, 1968 p.
  19. Liong, M.T.; Dunshea, F.R. and Shah, N.P., 2007. Effects of a synbiotic containing Lactobacillus acidophilus ATCC 4962 on plasma lipid profiles and morphology of erythrocytes in hyper cholesterolaemic pigs on high and low fat diets. The British journal of nutrition. Vol. 98, pp: 736-744.
  20. Mehdi, Y.; Létourneau-Montminy, M.P.; Gaucher, M.L.; Chorfi, Y.; Suresh, G.; Rouissi, T.; Brar, S.K.; Côté, C.; Ramirez, A.A. and Godbout, S., 2018. Use of antibiotics in broiler production: Global impacts and alternatives. Animal Nutrition. Vol. 4, pp: 170-178.
  21. Mirzaie, S. and Zirak-Khattab, F., 2018. Effects of dietary Spirulina on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature. Vol. 31, pp: 556-563.
  22. Neyrinck, A.M.; Taminiau, B.; Walgrave, H.; Daube, G.; Cani, P.D.; Bindels, L.B. and Delzenne, N.M., 2017. Spirulina protects against hepatic inflammation in aging: an effect related to the modulation of the gut microbiota. Nutrients. Vol. 9, 633 p.
  23. Niccolai, A.; Shannon, E.; Abu-Ghannam, N.; Biondi, N.; Rodolfi, L. and Tredici, M.R., 2019. Lactic acid fermentation of Arthrospira platensis (Spirulina) biomass for probiotic-based products. Journal of Applied Phycology. Vol. 31, pp: 1077-1083.
  24. Palamidi, I.; Fegeros, K.; Mohnl, M.; Abdelrahman, W.H.; Schatzmayr, G.; Theodoropoulos, G. and Mountzouris, K.C., 2016. Probiotic form effects on growth performance, digestive function, and immune related biomarkers in broilers. Poultry science. Vol. 95, pp: 1598-1616.
  25. Park, J.H.; Lee, S.I. and Kim, I.H., 2018. Effect of dietary Spirulina (Arthrospira) platensis on the growth performance, antioxidant enzyme activity, nutrient digestibility, cecal microflora, excreta noxious gas emission, and breast meat quality of broiler chickens. Poultry science. Vol. 97, pp: 2451-2459.
  26. Park, S.H.; Lee, S.I.; Kim, S.A.; Christensen, K. and Ricke, S.C., 2017. Comparison of antibiotic supplementation versus a yeast-based prebiotic on the cecal microbiome of commercial broilers. PLoS One. Vol. 12, pp: e0182805.
  27. Potten, C.S., 1998. Stem cells in gastrointestinal epithelium: numbers, characteristics & death. Philosophical transactions of the Royal Society of London. Vol. 353, pp: 821-830.
  28. SAS. 2009. User’s Guide: Statistics, Version 9.2. SAS Inst. Inc., Cary, NC,US.
  29. Seo, Y.J.; Kim, K.J.; Choi, J.; Koh, E.J. and Lee, B.Y., 2018. Spirulina maxima Extract Reduces Obesity through Suppression of Adipogenesis and Activation of Browning in 3T3-L1 Cells and High-Fat Diet-Induced Obese Mice. Nutrients. Vol. 10, 712 p.
  30. Shokaiyan, M.; Ashayerizadeh, O.; Shams Shargh, M. and Dastar, B., 2019. Algal Crude fucoidan alone or with bacillus subtilis DSM 17299 in broiler chickens diet: growth performance, carcass characteristics, blood metabolites, and morphology of intestine. Poultry Science Journal. Vol. 7, pp: 87-94.
  31. ŚWiĄTkiewicz, S.; Arczewska-WŁOsek, A. and JÓZefiak, D., 2015. Application of microalgae biomass in poultry nutrition. World's Poultry Science Journal. Vol. 71, pp: 663-672.
  32. Tavaniello, S.; Maiorano, G.; Mucci, R.; Bogucka, J.; Stadnicka, K. and Bednarczyk, M., 2018. Prebiotics offered to broiler chicken exert positive effect on meat quality traits irrespective of delivery route. Poultry science. Vol. 97, pp: 2979-2987.
  33. Tavernari, F.C.; Roza, L.F.; Surek, D.; Sordi, C. and Silva, M., 2018. Apparent metabolisable energy and amino acid digestibility of microalgae Spirulina platensis as an ingredient in broiler chicken diets. Vol. 59, pp: 562-567.
  34. Taylor, R.L. and McCorkle, F.M., 2009. A landmark contribution to poultry science-Immunological function of the bursa of Fabricius. Poultry science. Vol. 88, pp: 816-823.
  35. Teo, A.Y. and Tan, H.M., 2007. Evaluation of the Performance and Intestinal Gut Microflora of Broilers Fed on Corn-Soy Diets Supplemented With Bacillus subtilis PB6 (CloSTAT)1. The Journal of Applied Poultry Research. Vol. 16, pp: 296-303.
  36. Voltarelli, F.A. and de Mello, M.A., 2008. Spirulina enhanced the skeletal muscle protein in growing rats. European journal of nutrition. Vol. 47, pp: 393-400.
  37. Wang, S.; Peng, Q.; Jia, H.M.; Zeng, X.F.; Zhu, J.L.; Hou, C.L.; Liu, X.T.; Yang, F.J. and Qiao, S.Y., 2017. Prevention of Escherichia coli infection in broiler chickens with Lactobacillus plantarum B1. Poultry science. Vol. 96, pp: 2576-2586.
  38. Wang, X.; Farnell, Y.Z.; Peebles, E.D.; Kiess, A.S.; Wamsley, K.G.S. and Zhai, W., 2016. Effects of prebiotics, probiotics, and their combination on growth performance, small intestine morphology, and resident lactobacillus of male broilers. Poultry science. Vol. 95, pp: 1332-1340.
  39. Wang, X.; Kiess, A.S.; Peebles, E.D.; Wamsley, K.G.S. and Zhai, W., 2018. Effects of Bacillus subtilis and zinc on the growth performance, internal organ development, and intestinal morphology of male broilers with or without subclinical coccidia challenge. Poultry science. Vol. 97, pp: 3947-3956.
  40. Zentek, J.; Hall, E.J.; German, A.; Haverson, K.; Bailey, M.; Rolfe, V.; Butterwick, R. and Day, M.J., 2002. Morphology and immunopathology of the small and large intestine in dogs with nonspecific dietary sensitivity. The Journal of nutrition. Vol. 132, pp: 1652s-1654s.