بررسی تراکم‌های مختلف پرورش ماهی سی باس آسیایی (Lates calcarifer) در استخرهای میگو چوئبده آبادان

نوع مقاله : محیط زیست جانوری

نویسندگان

پژوهشکده آبزی پروری جنوب کشور، مؤسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران

چکیده

صنعت میگو در سال ­های اخیر با چالش بزرگی روبرو بوده، ­­به ­طوری ­که بیماری ویروسی اکثر مزارع را به ­صورت نیمه ­فعال یا غیرفعال درآورده است. ­ماهی سی ­باس به ­دلیل رشد سریع، تحمل شوری و توانایی در پذیرش غذای فرموله به ­عنوان گزینه که پتانسیل احیای این مزارع را دارد انتخاب شد. در این راستا به ­صورت آزمایشی در مجتمع پرورش میگو چوئبده آبادان از خرداد تا آذر 1396 که شامل 9 استخر 7000 مترمربعی در 3 تیمار با 3 تکرار، 3 تیمار با تراکم‌های ­12000،­ 13500­ و ­15000 قطعه با وزن اولیه 40 گرم، در هکتار ذخیره‌ سازی شد. فاکتورهای فیزیکو­شیمیایی آب، دما، pH و اکسی‍ژن به ­صورت مداوم، زیست ­سنجی به ­صورت 3 هفته یک‌ بار و شاخص‌های تغذیه ­ای و رشد شامل ضریب رشد ویژه (SGR)، ضریب تبدیل غذایی (FCR)، افزایش وزن (WG)، میزان کارایی پروتئین ­(PER)­ ودرصد بازماندگی (SVR) مورد بررسی قرار گرفت. وزن نهایی پس از 175 روز در تیمارهای مختلف وزن نهایی تراکم‌های 1، 2­ و ­3­ به ­ترتیب 9/14±749/17، 9/5±763/5­ و ­8/3±662/5­ اختلاف معنی‌ داری را نشان دادند (0/05>P). ­ضریب تبدیل غذایی در تیمارهای 1، 2 و 3 به­ ترتیب 0/03±1/39، 0/05±1/42 و ­0/06±1/45­ و ­درصد بازماندگی نیز در تیمارهای 1، 2 و 3 به ­ترتیب 1/46±83/84، 0/86±82/54 و 0/87±86/21­ اختلاف معنی­ داری را نشان داد (0/05>P). ­با توجه به نتایج به‌ دست‌ آمده در تیمارهای مختلف، تراکم متوسط 13500 قطعه در هکتار در استخرهای خاکی میگو بهترین کارایی را در این پژوهش نشان داد که می‌ تواند به ­عنوان یک الگویی در پرورش به ­کار گرفته شود.

کلیدواژه‌ها


عنوان مقاله [English]

The survey of different density culture of Asian seabass(Lates calcarifer) in shrimp ponds in ‎ Choebdeh Abadan province

نویسندگان [English]

  • Mehrdad Mohammadidust
  • Mohamah Yooneszadeh Fashalami
  • Fatemeh Hekmatpur
  • Seyed Abdol Saheb Mortezavi
  • Lefteh Mohseninejad
Aquaculture Research Center-South of IRAN, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Ahvaz, Iran
چکیده [English]

Recently shrimp industry has faced great challenge. Viral disease of the white spot causes the ‎inactive ‎of many farms. . Sea bass ‎fish with fast growth, easy replication, tolerance to high salinity and ‎the ability to accept formulated ‎foods can be used as alternatives to shrimp farms. Therefore, applied ‎research was designed. All ‎stages of the research were conducted at Chouebdeh Abadan Shrimp ‎Center. ‎‏9‏‎ pools of ‎‏7000‏‎ square ‎meters were selected in ‎‏3‏‎ treatments. The treatment was stored ‎with ‎‏12000‏‎, ‎‏13500‏‎ and ‎‏15000‏‎ fish per hectare. The ‎fish were ‎‏40‏‎ grams. The biomass was every ‎‏3‏‎ ‎weeks. Nutrition and growth indicatores including ‎specific growth factor (SGR), Food conversion rate ‎‎(FCR), Weight growth (WG), protein efficiency rate ‎‎(PER) and survival rate (SVR) were studied. Pellet ‎feeds were used at ‎‏2‏‎-‎‏5%‏‎ body weight . Physico-‎chemical factors including pH and pH were measured ‎during the course of the experiment. The results ‎showed that final weight had a significant difference ‎after ‎‏175‏‎ days. Treatment with high-density ‎growth in less than two treatments. (P <‎‏0.05‏‎). The final ‎weight was ‎‏14.9‏‎ ± ‎‏17.749‏‎, ‎‏
5.9‏‎ ± ‎‏5.763‏‎ and ‎‏3.8‏‎ ‎‎± ‎‏5.662 gr. Food conversion rate did not show a ‎significant difference in treatments. And ‎‏1.39‏‎ ± ‎‏0.33‏‎, ‎‏1.42‏‎ ± ‎‏0.05‏‎, and ‎‏1.45‏‎ ± ‎‏0.60‏‎, respectively. ‎Survival percentage did not show significant difference. ‎And ‎‏82.54‏‎ ± ‎‏0.86‏‎ ± ‎‏84.81‏‎ and ‎‏86.21‏‎ ± ‎‏0.87‏‎ ‎respectively. The results showed that the density of ‎‏13500‏‎ fish /hectare was the best treatment. Can ‎be used as a method.‎

کلیدواژه‌ها [English]

  • Sea bass
  • Culture
  • shrimp
  • Density
  • ‎ ‎Choebdeh Abadan
  1. Abdelghany, A.E. and Ahmad, M.H., 2002. Effects of feeding rates on growth and production of Nile Tilapia, common carp and silver carp polycultured in fertilized ponds. Aquaculture Research. Vol. 33, No. 6, pp: 415-423.
  2. Aldon, E.T., 1997. The culture of seabass. SEAFDEC Asian Aquaculture. Vol. 19, No. 4, pp: 14-17.
  3. Allen, G.R.; Midgley, S.H. and Allen, M., 2002. Field guide to the freshwater fishes of Australia. Western Australian Museum, Perth, Western Australia. 394 p.
  4. Barcellos, L.J.G.; Nicolaiewsky, S.; De Souza, S.M.G. and Lulhier, F., 1999. Plasmatic levels of cortisol in the response to acute stress in Nile tilapia, Oreochromis niloticus (L.), previously exposed to chronic stress. Aquaculture Research. Vol. 30, No. 6, pp: 437-444.
  5. Barton B.A. and Iwama, G.K., 1991. Physiological changes in ®sh from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Reviews of Fish Diseases. Vol. 10, pp: 3-26.
  6. Bonga, S.E.W., 1997. The stress response of fish. Physiological Reviews. Vol. 77, pp: 591-626.
  7. Chang, S.F.; Ngoh, G.H.; Kueh, L.F.S.; Qin, Q.W.; Chen, C.L.; Lam, T.J. and Sin, Y.M., 2001. Development of a tropical marine fish cell line from Asian seabass (Lates calcarifer) for virus isolation. Aquaculture. Vol. 192, pp: 133-145.
  8. Delgado, C.L.; Wada, N.; Rosegrant, M.W.; Meijer, S. and Mahfuzuddin, A., 2003. Outlook for fish to 2020 meeting global demand. A 2020 Vision for Food, Agriculture, and the Environment Initiative. International Food Policy Research Institute Washington, D.C., U.S.A. World Fish Center Penang, Malaysia. FAO. 2012.
  9. Fagerlund, U.H.M.; Mcbride, J.R. and Stone, E.T., 1981. Stress-Related Effects of Hatchery Rearing Density on Coho Salmon. Transactions of the American Fisheries Society. Vol. 110, No. 5, pp: 644-649.
  10. Garza-Gil, M.D.; Varela-Lafuente, M. and Caballero Miguez, G., 2009. Price and production trends in the marine fish aquaculture in Spain. Aquaculture Research. Vol. 40, pp: 274-281.
  11. Hengsawat, K.; Ward, F.J. and Jaruratjamorn, P., 1997. The effect of stocking density on yield, growth and mortality of African catfish (Clarias gariepinus Burchell 1822) cultured in cages. Aquaculture. Vol. 152, pp: 67-76.
  12. Hung, S.S.O.; Aikins, K.F.; Lutes, P.B. and Xu, R., 1989. The ability of juvenile white sturgeon (Acipenser transmontanus) to utilize different carbohydrate source. Journal Nutrition. Vol. 119, pp: 272-733.
  13. Hung, S.S.O. and Lutes, P.B., 1987. Optimum feeding rate of hatchery-produced juvenile white sturgeon (Acipenser transmontanus): at 20 C. Aquaculture. Vol. 65, No. 3-4, pp: 307-317.
  14. Jobling, M., 1994. Fish Bioenergetics. Chapman and Hall, London. 309 p.
  15. Jobling, M.; Johnsen, H.K.; Pettersen, G.W. and Henderson, RJ., 1995. Effect of temperature on reproductive development in Arctic charr, SalvelillllS a/pilllls (L.). Journal of Thermal Biology. Vol. 20, pp: 157-165.
  16. Kebus M.J.; Collinsa, M.T.; Brownfielda M.S.; Amundsonb T.B. and Kebus M.J., 1992. Effects of rearing density on the response and growth of rainbow trout. Journal of Aquatic Animal Health. Vol. 4, pp: 1-6.
  17. McGeer, A.; Campbell, B.; Emori, T.G.; Hierholzer, W.J.; Jackson, M.M.; Nicolle, L.E.; Peppler, C.; Rivera, A.; Schollenberger, D.G. and Simor, A.E., 1991. Definitions of infection for surveillance in long-term care facilities. Am J Infect Control.  Vol. 19, No. 1, pp: 1-7.
  18. Paterson, B.D.; Rimmer, M.A.; Meikle, G.M. and Semmens, G.L., 2003. Physiological responses of the Asian sea bass, Lates calcarifer to water quality deterioration during simulated live transport: acidosis, red-cell swelling, and levels of ions and ammonia in the plasma. Aquaculture. Vol. 218, pp: 717-728.
  19. Peters, G.; Delventhal, H. and Klinger, H., 1980. Physiological and morphological effects of social stress on the eel, Anguilla anguilla L. In Fish Disease (Ahne, W., ed.), Berlin: Springer-Verlag. pp: 225-227.
  20. Pickerring, A.D. and Stewart, A., 1984. Acclimation of the internal tissue of the brown trout, Salmo truta L., to the chronic crowding stress. J. Fish. Biol. Vol. 24, pp: 731-740.
  21. Pottinger, T.G.; Pickering, A.D. and Hurley, M.A., 1992. Consistency in the stress response of individuals of two strains of rainbow trout, Oncorhynchus mykiss. Aquaculture. Vol. 103, pp: 275-289.
  22. Rafatnezhad, S.; Falahatkar B. and Gilani, M.H.T., 2008. Effects of stocking density on haematological parameters, growth and fin erosion of great sturgeon (Huso huso) juveniles Aquac. Res. Vol. 39, pp: 1506-1513.
  23. Ronyai, A.; Peteri, A. and Radics, F., 1990. Cross breeding of sterlet and Lena River’s sturgeon. Aquaculture Hungrica (Szarwas). Vol. 6, pp: 13-18.
  24. Sloman, K.A.; Gilmour, K.M.; Taylor, A.C. and Metcalfe, N.B., 2000. Physiological effects of dominance hierarchies within groups of brown trout, Salmo fruita, held under simulated natural conditions. Fish Physiology and Biochemistry. Vol. 22, pp: 11-20.
  25. Szczepkowski, M.; Szczepkowska, B. and Piotrowska, I., 2011. Impact of higher stocking density of juvenile Atlantic sturgeon, Acipenser oxyrinchus Mitchill, on fish growth, oxygen consumption, and ammonia excretion. Arch. Pol. Fish. Vol. 19, pp: 59-67.
  26. Szkudlarek, M. and Zakêoe Z., 2002. The effect of stock density on the effectiveness of rearing pikeperch Sander lucioperca (L.) summer fry Arch. Pol. Fish. Vol. 10, pp: 115-119.
  27. Vigayan, M.M. and Leatherland, J.F., 1988. Effect of stocking density on the growth and stress-response in brook charr, Salvelinus fontinalis. Aquaculture. Vol. 75, pp: 159-170.
  28. Wedemeyer, G.A., 1997. Effects of rearing conditions on the health and physiological quality of fish in intensive culture. In: Fish Stress and Health in Aquaculture. (Iwama, G.K.; Pickering, A.D.; Sumpter, J.P. and Schrek, C.B., eds), Society for Experiment Biology, Seminar Series 62. Cambridge: Cambridge University Press. pp: 35-72.
  29. Whitehead, P.J.P., 1984. Centropomidae. In W. Fischer and G. Bianchi (eds.) FAO species identification sheets for fishery purposes. Western Indian Ocean (Fishing Area 51). [pag. var.] FAO, Rome. Vol. 1.
  30. Yooneszadeh Feshalami, M.; Amiri, F.; Nickpey, M.; Mortezavizadeh, S.A.; Gisbert, E. and Torfi, M., 2016. The influence of stocking density on growth and physiological responses of beluga, Huso huso (Brandt, 1869) and ship sturgeon, Acipenser nudiventris (Lovetsky, 1828) juveniles in a flow-through system. World Aquaculture Society. doi: 10.1111/jwas.1237
  31. Yooneszadeh Feshalami, M.; Torfi, M.; Amiri, F.; Mortezavizadeh, S.A. and Gisbert, E., 2018. Optimal stocking density for beluga, Huso huso, and ship sturgeon, Acipenser nudiventris during the grow-out phase. Journal of Applied Ichthyology. Vol. 35, pp: 303-306.