مقایسه خواص آنتی اکسیدانی کیتوالیگوساکاریدهای استخراجی از ضایعات میگوی پرورشی پا سفید غربی (Litopenaeus vannami)، اسکوئید هندی (Uroteuthis duvaucelii) و خرچنگ گرد (Portunus pelagicus)

نوع مقاله : زیست شناسی (جانوری)

نویسندگان

گروه عمل آوری فرآورده های شیلاتی، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

چکیده

استفاده بهینه از ضایعات حاصل از کارخانه‌ های فرآوری آبزیان از مسائل بسیار مهم و نیاز به بازبینی اساسی دارد، ­از یک‌ سو،­ ورود این ضایعات به‌ عنوان زباله‌ های تر علاوه بر تولید شیرابه و تهدید اکوسیستم‌ های آبی و بروز مشکلات زیست‌ محیطی، می‌ تواند یکی از عوامل مشکل‌ زا و سبب بروز بیماری‌ های مختلف گردد. از سویی دیگر منابعی چنین با اهمیت می‌ تواند مورد بهره ­برداری قرار گرفته و منتج به تولید فراورده‌ های با ارزش افزوده بالا مثل آنزیم‌ ها، ژلاتین، کیتین، کیتوزان و غیره گردد. با توجه به اثرات بیولوژیک و زیست ­فعال گزارش‌ شده از الیگوساکاریدهای استخراجی از ترکیبات کیتینی نرم ­تنان دریایی در سال ­های اخیر که با نام (کیتوالیگوساکاریدها) شناخته می­ شوند، امکان استفاده از این اجزای فرا­سودمند به ­عنوان ترکیبات آنتی اکسیدان مورد بررسی قرار گرفت. در بررسی­ های انجام شده تقریباً در تمام آزمون­ ها کیتوالیگوساکاریدها توانایی مهاری نسبتاً خوبی از خود نشان دادند که می ­توانند به ­عنوان یک منبع خوب برای تحقیقات آنتی ­اکسیدانی مورد بررسی قرار بگیرند. در آزمون خنثی ­سازی رادیکال DPPH، با کمی فاصله از ویتامین C الیگوساکارید اسکوئید هندی با استخراج اسیدی با 78/23 درصد، در آزمون بررسی احیا در برابر یون آهن، کیتوالیگوساکارید خرچنگ گرد با استخراج آنزیمی بیش ­ترین اثر فعالیت احیایی 19 درصد را از خود نشان داد. هم­ چنین در آزمون سنجش ظرفیت آنتی اکسیدانی کل کیتوالیگوساکارید میگو وانامی استخراج اسیدی بالاترین ظرفیت آنتی­ اکسیدانی 42/19 درصد را از خود نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Compare antioxidant activity properties of oligosaccharides derived from waste of (cultured white leg shrimp (Litopenaeus vannami), indian Squid (Uroteuthis oluvaucelii) and blue crab (Portunus pelagicus)

نویسندگان [English]

  • Hooman Teimouri
  • Masoud Rezaei
  • Mahdi Tabarsa
Department of Fishery Products Processing, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
چکیده [English]

The optimal utilization of waste from aquaculture factories is one of the most important issues and needs to be reviewed. On the one hand, the entry of these wastes as waste in addition to the production of leachate and threats of aquatic ecosystems and the occurrence of environmental problems can be a contributing factor to various diseases. On the other hand, such valuable resources can be exploited and result in the production of high added high value products such as enzymes, gelatin, chitin, chitosan, and so on. Considering the biologically and biologically active effects of extracted oligosaccharides from quintic compounds of marine molluscs in recent years, known as chitooligosaccharides, Possibility of using these superficial components as antioxidant compounds was studied. In surveys, in almost all tests, chitooligosaccharides showed a fairly good inhibitory ability that could be considered as a good source for antioxidant studies. In the DPPH radical neutralization test, with a little distance from vitamin C, indigenous oligosaccharide squid with acid extraction of 78.23%, Investigation of iron ion regeneration, chitooligosaccharides of crayfish with enzymatic extraction showed the highest effect of 19% reduction activity. Also, in the antioxidant capacity test, total acidity extraction of white leg shrimp chitooligosaccharides showed the highest antioxidant capacity of 42.19.

کلیدواژه‌ها [English]

  • Chitooligosaccharides
  • Antioxidant properties
  • Nutraceutical
  • Molecular Weight
  1. سلیمانی، س.؛ یوسفی ­زاده، م.؛ معین، س.؛ امراللهی ­بیوکی، ن.؛ کشاورز، م. و  اصلیان، ح.، 1394. ارزیابی فعالیت آنتی­ اکسیدانی و تعیین محتوای پلی فنلی توتیای دریایی Echinometra mathaei خلیج فارس. زیست فناوری دانشگاه تربیت مدرس. دوره 6، شماره 2، صفحات 71 تا 82.
  2. Agnihotri, S.A.; Mallikarjuna, N.N. and Aminabhavi, T.M., 2004. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. Journal of Controlled Release. Vol. 100, No. 1, pp: 5-28.
  3. Azuma, K.; Izumi, R.; Osaki, T.; Ifuku, S.; Morimoto, M.; Saimoto, H. and Minami, S., 2015. Chitin, chitosan, and its derivatives for wound healing: old and new materials. Journal of functional biomaterials. Vol. 6, No. 1, pp: 104-142.
  4. Baha, E.A.; Assaâd, S.; Anissa, H.; Ali,B. and Mohamed, A.A., 2017. β-chitin and chitosan from squid gladius: Biological activities of chitosan and its application as clarifying agent for apple juice. International Journal of Biological Macromolecules. Vol. 104, pp: 953-962.
  5. Bersuder, P.; Hole, M. and Smith, G., 1998. Antioxidants from a Heated Histidine-Glucose Model System. I: Investigation of the Antioxidant Role of Histidine and Isolation of Antioxidants by High-Performance Liquid Chromatography. Journal of the American Oil Chemists’ Society. Vol. 75, pp: 181-187. 
  6. Bravo-Osuna, I.; Millotti, G.; Vauthier, C. and Ponchel, G., 2007. In vitro evaluation of calcium binding capacity of chitosan and thiolated chitosan poly (isobutyl cyanoacrylate) core shell nanoparticles. International Journal of Pharmaceutics. Vol. 338, No. 12, pp: 284-290.
  7. Feng, T.; Du, Y.; Li, J.; Wei, Y. and Yao, P., 2006. Antioxidant activity of half N-acetylated water-soluble chitosan in vitro. European Food Research and Technology. Vol. 225, No. 1, pp: 133-138.
  8. Ferreira, I.; Baptista, P.; Vilas-Boas, M. and Barros, L., 2007. Free-radical scavenging antioxidant properties of a sulfated polysaccharide from the brown marine algae Sargassum swartzii. CJNM. Vol. 10, pp: 421-428.
  9. Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y. and Xia, E.Q., 2011. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. Vol. 129, pp: 345-350.
  10. Huang, H.C.; Hong, L.; Chang, P.; Zhang, J.; Lu, S.Y.; Zheng, B.W. and Jiang, Z.F., 2014. Chitooligosaccharides Attenuate Cu2+-Induced Cellular Oxidative Damage and Cell Apoptosis Involving Nrf2 Activation. Neurotoxicity Research. Vol. 27, No. 4, pp: 411-420.
  11. Jo, S.H.; Ha, K.S.; Moon, K.S.; Kim, J.G.; Oh, C.G.; Kim, Y.C.; Apostolidis, E. and Kwon, Y.I., 2013.  Molecular Weight Dependent Glucose Lowering Effect of Low Molecular Weight Chitosan Oligosaccharide (GO2KA1) on Postprandial Blood Glucose Level in SD Rats Model. Vol. 14, pp: 14214-14224.
  12. Kim, J.Y.; Lee, J.K.; Lee, T.S. and Park, W.H., 2003. Synthesis of chitooligosaccharide derivative with quaternary ammonium group and its antimicrobial activity against Streptococcus mutans. International Journal of Biological Macromolecules. Vol. 32, No. 1-2, pp: 23-27.
  13. Kim, S.K. and Rajapakse, N., 2005. Enzymatic production and biological activities of chitosan oligosaccharides(COS): A review. Carbohydrate Polymers. Vol. 62, No. 4, pp: 357-368.
  14. Li, K.; Xing, R.; Liu, S. and Li, P., 2016. Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohydrate Polymers. Vol. 139, pp: 178-190.
  15. Liao, F.H.; Shieh, M.J.; Chang, N.C. and Chien, Y.W., 2007. Chitosan supplementation lowers serum lipids and maintains normal calcium, magnesium, and iron status in hyperlipidemic patients. Nutrition Research. Vol. 27, No. 3, pp: 146-151.
  16. Liu, H.T.; Li, W.M.; Xu, G.; Li, X.Y.; Bai, X.F.; Wei, P. and Du, Y.G., 2009. Chitosan oligosaccharides attenuate hydrogen peroxide-induced stress injury in human umbilical vein endothelial cells. Pharmacological Research. Vol. 59, No. 3, pp: 167-175.
  17. Ming, T.Y.; Joan, H.Y. and Jeng, L.M., 2008. Antioxidant properties of chitosan from crab shells. Carbohydrate Polymers. Vol. 74, pp: 840-844.
  18. Ngo, D.H.; Qian, Z.J.; Vo, T.S.; Ryu, B.; Ngo, D.N. and Kim, S.K., 2011. Antioxidant activity of gallate-chitooligosaccharides in mouse macrophage RAW264.7 cells. Carbohydrate Polymers. Vol. 84, No. 4, pp: 1282-1288.
  19. Oh, S.H.; Ryu, B.; Ngo, D.H.; Kim, W.S.; Kim, D.G. and Kim, S.K., 2017. 4-hydroxybenzaldehyde-chitooligomers suppresses H 2 O 2 -induced oxidative damage in microglia BV-2 cells. Carbohydrate Research. Vol. 440, pp: 32-37.
  20. Park, J.H.; Saravanakumar, G.S.; Kim, K.Y. and Kwon, C., 2010. Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced Drug Delivery Reviews. Vol. 62, No. 1, pp: 28-41.
  21. Prabu, K. and Natarajan, E., 2012. In Vitro Antimicrobial and Antioxidant Activity of Chitosan Isolated from Podophthalmus vigil. Journal of Applied Pharmaceutical Science. Vol. 2, No. 9, pp: 75-82.
  22. Prieto, P.; Pineda, M. and Aguilar, M., 1999Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin, Analytical biochemistry.
  23. Pasiyappazham R.; Namasivayam, S.; Vairamani, S. and Annaian, S., 2014. Extraction, characterization and antioxidant property of chitosan from cuttlebone Sepia kobiensis (Hoyle 1885). International Journal of Biological Macromolecules. Vol. 64, pp: 202-212.
  24. Sinswat, P. and Tengamnuay, P., 2003. Enhancing effect of chitosan on nasal absorption of salmon calcitonin in rats: comparison with hydroxypropyl- and dimethyl-b cyclodextrins. International Journal of Pharmaceutics. Vol. 257, No. 12, pp: 15-22.
  25. Sugano, M.; Fujikawa, T.; Hiratsuji, Y.; Nakashima, K.; Fukuda, N. and Hasegawa, Y., 1980. A novel use of chitosan as a hypocholesterolemic agent in rats. American Journal of Clinical Nutrition. Vol. 33, pp: 787-793.
  26. Sun, T.; Zhou, D.; Xie, J. and Mao, F., 2006. Preparation of chitosan oligomers and their antioxidant activity. European Food Research and Technology. Vol. 225, No. 3-4, pp: 451-456.
  27. Suzuki, K.; Mikami, T.; Okawa, Y.; Tokoro, A.; Suzuki, S. and Suzuki, M., 1986. Antitumor effect of hexa-N acetylchitohexaose and chitohexaose. Carbohydrate Research. Vol. 151, pp: 403-408.
  28. Thanou, M.; Verhoef, J.C. and Junginger, H.E., 2001. Chitosan and its derivatives as intestinal absorption enhancers. Advanced Drug Delivery Reviews. Vol. 50, No. S1, pp:  S91-S101.
  29. Tokoro, A.; Tatewaki, N.; Suzuki, K.; Mikami, T.; Suzuki, S. and Suzuki, M., 1988. Growth-inhibitory effect of hexa-N-acetylchitohexaose and chitohexaose against meth-A solid tumor. Chemical & Pharmaceutical Bulletin. Vol. 36, pp: 784-790.
  30. Uchida, Y.; Lzume, M. and Ohtakara, A., 1989. Preparation of chitosan oligomers with purified chitosanase and its application. In G. Skjak-Brak, T. Anthonsen, & P. Sandford (Eds.), Chitin and chitosan: Sources, chemistry, biochemistry, physical properties and applications London: Elsevier. pp: 373-382.
  31. Van, P.; Cutsem, J. and Cabrera, C., 2005. Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochemical Engineering Journal. Vol. 25, No. 2, pp: 165-172.
  32. Wei, X.L. and Xia, W.S., 2003. Research development of chitooligosaccharides physiological activities. Chinese Pharmaceutical Bulletin. Vol. 19, No. 6, pp: 614-617.
  33. Xia, W.S., 2003. Physiological activities of chitosan and its application in functional foods. Journal of Chinese Institute of Food Science and Technology. Vol. 3, No. 1, pp: 77-81.
  34. Xie, C.; Wu, X.; Long, C.; Wang, Q.; Fan, Z.; Li, S. and Yin, Y., 2016. Chitosan oligosaccharide affects antioxidant defense capacity and placental amino acids transport of sows. BMC Veterinary Research. Vol. 12, No. 1.
  35. Younes, O.; Ghorbel-Bellaaj, R.; Nasri, M.; Chaabouni, M.; Rinaudo, M. and Nasri, S. 2012. Process Biochem. Vol. 47, pp: 2032-2039.
  36. Zhao, X.R. and Xia, W.S., 2006. Antimicrobial activities of chitosan and application in food preservation. Chinese Food Research and Development. Vol. 27, No. 2, pp: 157-160.
  37. Zhou, K.; Xia, W.; Zhang, C. and Yu, L., 2006. In vitro binding of bile acids and     triglycerides by selected chitosan preparations and their physicochemical properties. LWT Food Science and Technology. Vol. 39, pp: 1087-1092.
  38. Zong, H.; Li, K.; Liu, S.; Song, L.; Xing, R.; Chen, X. and Li, P., 2017. Improvement in cadmium tolerance of edible rape (Brassica rapa L.) with exogenous application of chitooligosaccharide. Chemosphere. Vol. 181, pp: 92-100.
  39. Zou, P.; Li, K.; Liu, S.; He, X.; Zhang, X.; Xing, R. and Li, P., 2016. Effect of sulfated chitooligosaccharides on wheat seedlings (Triticum aestivum L.) under salt stress. J. Agric. Food Chem. Vol. 64, pp: 2815-2821.