بررسی میزان رشد و پروفایل اسیدهای چرب ریزجلبک Chlorella vulgaris در محیط کشت حاوی فاضلاب شهری

نوع مقاله: بوم شناسی

نویسندگان

1 گروه شیلات، دانشکده علوم دریایی، دانشگاه دریانوردی و علوم دریایی چابهار، چابهار، ایران

2 گروه زیست شناسی دریا، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

چکیده

 این تحقیق به ­منظور تعیین محتوای اسیدهای چرب در ریزجلبک Chlorella vulgaris کشت شده در تیمارهای مختلف فاضلاب شهری انجام گردید. چهار تیمار (هر تیمار با 3 تکرار) با درصدهای مختلف فاضلاب شهری و محیط کشت f/2 تهیه و در شرایط آزمایشگاهی نگه ­داری شدند. جداسازی ریزجلبک در مراحل مختلف آزمایش با استفاده از دستگاه سانتریفوژ انجام گردید. میزان رشد و اسیدهای چرب در همه تیمارها اندازه­ گیری شد. نتایج نشان داد که طی دوره کشت، تیمارهای 1 و 4 بیش ­ترین رشد را داشتند. بین همه تیمارها بیش ­ترین مقدار اسیدهای چرب اشباع مربوط به C17:0 (هپتادکانوئیک اسید) و C6:0 (هگزانوئیک اسید) بود و هم ­چنین بیش ­ترین مقدار اسیدهای چرب غیراشباع با یک پیوند دوگانه مربوط به C16:1 (پالمیتولئیک اسید) و C18:1Cis9 (اولئیک اسید) بود. از نظر مقادیر اسیدهای چرب غیراشباع تک پیوندی (MUFA) و چندپیوندی (PUFA) بین تیمارها اختلاف معنی ­دار مشاهده شد (0/05>p). نتایج آنالیز واریانس یک ­طرفه (One-Way ANOVA) در تاثیر محیط­ های کشت بر مقادیر اسید چرب امگا 3 و 6 تفاوت معنی ­داری را بین تیمارها نشان داد (0/05>p). بیش ­ترین مقدار مربوط به اسید چرب امگا 3 در تیمار 2 (18/28 درصد) بود، درصورتی ­که در سایر تیمارها مقدار این اسید کم ­تر از 2 درصد ثبت گردید. بیش ­ترین مقدار امگا 6 هم در تیمار 2 و 4 با مقدار تقریبی 12 درصد اندازه ­گیری شد. براساس نتایج تحقیق حاضر پیشنهاد می­ شود که از فاضلاب به ­عنوان محیط کشت جایگزین برای تکثیر و پرورش انبوه ریزجلبک Chlorella vulgaris به ­عنوان منبعی غنی از امگا 3 استفاده شود.

کلیدواژه‌ها


  1. باقری، ش. و معصومی ­زاده، س.ز.، 1395. بررسی رشد میکروجلبک Chlorella sp. در آب دریا و فاضلاب غیراستریل. مجله علمی شیلات ایران. شماره 26، جلد 2، صفحات 153 تا 163.
  2. گرجی، ه.؛ دوست­ شناس، ب.؛  سخایی ­زاده،  ن. ؛ غانمی، ک. و ارچنگی، ب.، 1396. بررسی پروفایل اسیدهای چرب ریزجلبک­ های Spirulina sp. sp. ، Chlorella sp. Chaetoceros و معرفی آن­ ها به عنوان منابع بالقوه جدید جهت استخراج 6 و امگا 3 امگا. دوماهنامه طبّ جنوب. دوره 19، شماره 2، صفحات 212 تا 224.
  3. Banerjee, S.; Hew, W.E.; Shariff, M. and Yusoff, F.M., 2011.Growth and proximate composition of tropical marine Chaetoceros calcitrans and Nannochloropsis oculata cultured outdoors and under laboratory conditions. African. Journal of Biotechnology. Vol. 10, pp: 1375-1383.
  4. Becker, E.W., 1994. Microalgae: Biotechnology and Microbiology. (New York)
  5. Bowen, R.A. and Clandinin, M.T., 2010. Maternal dietary 22:6n-3 is more effective than 18:3n-3 in increasing content in phospholipids of glial dietary protein sources and risk of coronary heart disease in women. Circulation. Vol. 122, pp 876-883.
  6. Changfu, W.; Xiaoqing, Y.; Hong, L. and Jun, Y., 2013. Nitrogen and phosphorus removal from municipal wastewater by the green alga Chlorella sp. Journal of Environmental Biology. Vol. 34, pp 421-425.
  7. Chattip, P.; Prasert, P.; Armando, T.Q.; Montomobu, G. and Artiwan, S., 2012. Microalgae lipid extraction and evaluation of single step biodiesel production. Engineering Journal. Vol. 16, 5 p.
  8. Cho, S.; Lee, N. and Park, S., 2013. Micoalgae cultivation for bioenergy production using wastewaters from mamunicipal waste water treatment plant, as nutritional sources. Bioresour. Technol. Vol. 131, pp: 515-520.
  9. Cho, D.H.; Ramanan, R.; Heo, J.; kang, Z.; Kim, B.H.; Ahn, C.Y.; Oh, H.N. and Kim, H.S., 2015. Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater. Bioresour. Technol. Vol. 191, pp: 481-487. doi: 10.1016/j.biortech.2015.02.013.
  10. Das, S.K.; Khan, M.M.R.; Guha, A.K.; Das, A.R.  and Mandal, A.B., 2012. Silver-nano biohybride material: synthesis, characterization and application in water purification. Bioresource Technology. Vol. 124,pp 495-499.
  11. Dieffnbacher, A. and Pocklington, W., 1992. Standard Methods for the Analysis of Oils, Fats and Derivatives 1St Supplement. 7th Revised and Enlarged Edition. Blackwell Scientific Oxford. Vol. 1, 171 p.
  12. Farooq, A.; Aminu, K. and Abdullah, Y., 2013. The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pakistan Journal of Botany. Vol. 45, pp: 461-465.
  13. Folch, A.; Ayon, A.; Hurtado, O.M.A.; Schmidt, M.A. and Tone, H., 1999. Molding of deep polydimethylsiloxane microstructures for microfluidics and biological applications. Journal of Biomechanical Engineering. Vol. 121, pp: 28-34.
  14. Galli, C. and Marangoni, F., 2006. N-3 fatty acids in the Mediterranean diet. Prostaglandins Leukotrienes and Essential Fatty Acids. Vol. 75, pp: 129-33.
  15. Goli, S.A.H.; Sahafi, S.M.; Rashidi, B. and Rahimmalek, M., 2013. Novel oilseed of Dracocephalum kotschyi with high n3 to n6 polyunsaturated fatty acid ratio. Industrial Crops and Products. Vol. 43, pp: 188-193.
  16. Gorjizadeh, H.; Sakhaei, N.; Doustshenas, B.; Ghanemi, K. and Archangi, B., 2016. Fatty acid composition of Spirulina sp., Chlorella sp. and Chaetoceros sp. Microalgae and introduction as potential new sources to extinct omega 3 and omega 6. Iran South Medical Journal. Vol. 19, No. 2, pp: 212-224.
  17. He, P.J.; Mao, B. and Shen, C.M., 2013. Cultivation of Chlorella vulgaris on waste water containing high level of ammonia for biodiesel production. Bioresour. Technol. Vol. 129, pp: 177-181.
  18. Hu, Q.; Sommerfeld, M.; Jarvis, E. and Ghirardi, M., 2008. Microalgal triacylglycerols as feed stocks for biofuel productions: perspectives and advances. Blackwell Publishing Ltd, National Renewable Energy Laboratory. Plant. Vol. 5, pp: 621-639.
  19. Kshirsagar, A.D., 2013. Bioremediation of wastewater by using microalgae: an experimental study. International Journal of Life Science Biotechnology and Pharmacology Research. Vol. 2, No. 3, pp: 339-346.
  20. Kachroo, D.; Singh, J.S.M. and Ramamurthy, V., 2006. Modulation of unsaturated fatty acids content in algae Spirulina platensis and Chlorella minutissima in response to herbicide SAN 9785. Elect J Biotech. Vol. 9, pp: 386-390.
  21. Lavajoo, F.; Amrollahi Biuki, F.; Khanipour, A.; Mirzajani, A. and Akbarzadeh, A., 2018. An Invasive Shrimp Species, Machrobrachium nipponense, in Anzali Wetland Demonstrated a Potential Source for Commercial Fishing, Journal of Aquatic Food Product Technology. Vol. 27, No. 9, pp: 975-985.
  22. Lavajoo, F. and Taherizadeh, M., 2016. Determination of the growth rates of Spirolina and Chaeatoceros algae in urban waste sewage and their capability to deplete nitrate and phosphate content in the sewage. Journal of Applied Sciences & Environmental Management. Vol. 20, No. 3, pp: 691-699.
  23. Leonardos, N. and Geider, R.J., 2004. Responses of elemental and biochemical composition of Chaetoceros muelleri to growth under varying light and nitrate: phosphate supply ratios and their influence on critical N:P. Limnol. Oceanogr. Vol. 49, pp: 2105-2114.
  24. Li, X.; Hu, H.Y.  and Yang, J., 2010. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. New Biotechnology. Vol. 27, No. 1, pp: 59-63.
  25. Mahmut, O. and Sengil, I.A., 2003. Enhancing phosphate removal from wastewater by using polyelectrolytes and clay injection. Journal of Hazardous Material. Vol. 100, No. 1-3, pp: 131-146.
  26. Mandalam, R.K. and Palsson, B., 1998. Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris culture. Biotechnol. Bioeng. Vol. 59, pp: 605-611.
  27. Merzlyak, M.N.; Chivkunova, O.B.; Gorelova, O.A. and Reshetnikova, V., 2007. Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). Journal of Phycology. Vol. 43, No. 4, pp: 833-843.
  28. Myers, J.A.; Curtis, B.S. and Curtis, W.R., 2013. Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophysics. Vol. 6, 4 p.
  29. Otles, S. and Pire, R., 2001. Fatty acid composition of Chlorella and Spirulina microalgae species. J AOAC. Vol. 84, pp: 1708-1714.
  30. Rocha, J.M.S.; Garcia, J.E.C. and Henriques, M.H.F., 2003. Growth aspects of the marine microalga Nannochloropsis gaditana. Biomolecular engineering. Vol. 20, pp: 237-242.
  31. Sayadi, M.H.; Ghatnekar, S.D. and Kavian, M.F., 2011. Algae a promising alternative for biofuel. Proceedings of the International Academy of Ecology and Environmental Sciences. Vol. 1, No. 2, 112 p.
  32. Salgueiro, J.L.; Perez, L.; Maceiras, R.; Sanchez, A. and Cancela, A., 2016. Bioremediation of wastewater using Chlorella vulgaris microalgae: phosphorus and organic matter. Int. J. Environ. Res. Vol. 10, No. 3, pp: 465-470.
  33. Tam, N.F.Y. and Wong, Y.S., 1994. Nutrient and heavy metal retention in mangrove sediment receiving wastewater. Water Science and Technology. Vol. 29, No. 4, pp: 193-200.
  34. Tam, N.F.Y. and Wong, Y.S., 1996. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technology. Vol. 57, No. 1, pp: 45-50.
  35. Voltolina, D.; Gmez-Villa, H. and Correa, G., 2004. Biomass production and nutrient removal in semicontinuous cultures of Scenedesmus sp. (Chlorophyceae) in artificial wastewater, under a simulated day-night cycle. Vie Milieu. Vol. 54, pp: 21-25.
  36. Vasconcelos, V.M. and Pereira, E., 2001. Cyanobacteria diversity and toxicity in wastewater treatment plant (Portugal). Water Research. Vol. 35, pp: 1354-1357.
  37. Voet, D.; Voet, J.G. and Pratt, C.W., 2006. Fundamentals of Biochemistry (2nd ed.). John Wiley & Sons. pp: 547-556. 
  38. Yalcin, T.; Naz, M. and Turkmen, M., 2006. Utilization of different nitrogen sources by cultures of Scenedesmus acuminatus. Turkish Journal of Fisheries and Aquatic Sciences. Vol. 6, pp: 123-127.
  39. Yang, J.; Rasa, E. and Tantayotai, P., 2011. Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresource Technol. Vol. 102, pp: 3077-3082.
  40. Yoo, C.; Jun, S.Y. and Lee, J.Y., 2010. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology. Vol. 101, pp: 71-74.