تاثیر باکتری Lactobacillus rhamnosus بر شاخص های بیوشیمیایی خون و فعالیت آنزیم های هضمی در ماهی قزل آلای رنگین کمان (Oncorhynchus mykiss) تغذیه شده با جیره آلوده به آفلاتوکسین B1

نوع مقاله : تغذیه

نویسندگان

1 گروه شیلات، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی، گرگان، ایران

2 گروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

3 گروه شیلات، دانشکده علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

چکیده

در فرایند تولید و نگه ­داری خوراک آبزیان، همواره ممکن است برخی آلودگی ­ها به غذا سرایت کند که آفلاتوکسین B1 یکی از شایع ­ترین و خطرناک ترین این سموم است. هدف از انجام این تحقیق بررسی تاثیر پروبیوتیک Lactobacillus rhamnosus بر بهبود شرایط زیستی ماهیان قزل آلای رنگین­ کمان (Oncorhynchus mykiss) تغذیه شده با جیره آلوده به آفلاتوکسین B1 بود. در این آزمایش، 120 قطعه ماهی 4±42 گرمی در 12 مخزن فایبرگلاس با 4 جیره غذایی مختلف (جیره پایه، جیره حاوی پروبیوتیک، جیره حاوی سم آفلاتوکسین و جیره ترکیب سم و پروبیوتیک) تغذیه شدند و پس از اتمام دوره 30 روزه آزمایش، میزان گلوکز خون در گروه تغذیه شده با جیره حاوی سم آفلاتوکسین B1، به شکل معنی­ داری از سایر تیمارها بیش ­تر بود (0/05>P). کورتیزول و آنزیم آلکالین فسفاتاز در هردو تیمار جیره پایه و جیره حاوی پروبیوتیک، کم ترین مقدار را نشان دادند. فعالیت آنزیم تریپسین در روده تیمارهای پروبیوتیکی، به شکل معنی ­دار نسبت به سایر تیمارها بیش ­تر بود. درحالی ­که جیره حاوی سم فعالیت آنزیم کیموتریپسین را در روده ماهی کاهش داد و افزودن پروبیوتیک به جیره غذایی باعث افزایش معنی ­دار فعالیت این آنزیم شد. میزان تلفات نیز در تیمار جیره حاوی سم به شکل معنی ­داری از سایر تیمارها بیش ­تر بود اما با افزودن پروبیوتیک به جیره، در تیمار جیره حاوی پروبیوتیک و سم به شکل معنی ­دار کاهش یافت. در پایان نتایج به ­دست آمده از این مطالعه نشان می­ دهد که پروبیوتیک Lactobacillus rhamnosus می­ تواند به­ عنوان یک افزودنی خوراکی برای کاهش اثرات سمی آفلاتوکسین B1 و بهبود میزان بقا در ماهی استفاده شود و پرورش دهندگان قزل ­آلا می­ توانند به ­منظور کاهش اثر سمیت آفلاتوکسین از این پروبیوتیک در جیره خود استفاده نمایند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of dietary Lactobacillus rhamnosus on blood biochemical indices and some digestive enzymes activity in rainbow trout (Oncorhynchus mykiss) fed with aflatoxin B1 infected diet

نویسندگان [English]

  • Nazanin Sadeghi 1
  • Rana Bahadori 2
  • Seyed Mehdi Ojagh 3
  • Erfan Salamroodi 2
1 Department of Fisheries, Faculty of Fisheries and Environment, University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Fisheries Department, Faculty of Natural Resources, University of Tehran, Karaj, Iran
3 Department of Fisheries , Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
چکیده [English]

In the process of production and maintenance of aquaculture diets, there may always be some contamination of feed that aflatoxin B1 is one of the most common and most prominent of these toxins. The purpose of this study was to investigate the effect of Lactobacillus rhamnosus on the improvement of biological conditions of rainbow trout (Oncorhynchus mykiss) fed with aflatoxin B1 contaminated diets. In this experiment, 120# fish with initial weight of 42 ± 4 gr were harvested in 12 fiberglass tanks and fed with 4 different diets (control diet, probiotic diet, aflatoxin diet, and aflatoxin and probiotic mix diet) and after 30-day period of experiment, blood glucose levels in the group fed with aflatoxin B1 significantly increased (P <0.05). Cortisol and alkaline phosphatase enzyme showed the least amount in control diet treatments and probiotic diet. The activity of trypsin in the probiotic diet treatments was significantly higher than other treatments. While the aflatoxin diet reduced the activity of the chymotrypsin enzyme in the gut, adding Lactobacillus rhamnosus to the diet caused a significant increase in the activity of this enzyme. The mortality rate was significantly higher in the treatment of aflatoxin diet than other treatments, but by adding probiotic to diet, it decreased significantly in the treatment of probiotic and aflatoxin diet. In conclusion, the results of this study indicate that probably Lactobacillus rhamnosus probiotic can be used as a diet supplement to reduce the toxic effects of aflatoxin B1 and improve survival in fish, and rainbow trout breeders can use this probiotic in their diet to reduce aflatoxin toxicity.

کلیدواژه‌ها [English]

  • Blood serum
  • Glucose
  • Probiotics
  • Total protein
  • Toxin
  • Trypsin
  1. جوانمردی، س.؛ رضایی­ توابع، ک.؛ مرادی، س. و بیات­ غیاثی، ل.، 1396. اثرات سطوح مختلف ویتامین C در جیره غذایی بر عملکرد رشد، فعالیت آنزیم‌ های هضمی و برخی فاکتورهای استرسی خون ماهی قزل ­آلای رنگین­ کمان (Oncorhynchus mykiss) تحت سمیت تحت کشندة سم مالاتیون. فصلنامه علوم آبزی پروری. دوره 5، شماره 2، صفحات 40 تا 49.
  2. دهقان ­نواز، م.؛ ستاری، م. و رمضان­ پور، ز.، ۱۳۹۴. تغییرات آسپارتات آمینوترانسفراز و لاکتات دهیدروژناز تحت تاثیر سمیت جلبک Nodularia spumigena در ماهی آزاد دریای خزر Salmo trutta caspius. مجله توسعه آبزی پروری. دوره 9، شماره 4، صفحات 21 تا 30.
  3. Ahmad, Z., 2011. Toxicity bioassay and haematological changes induced by diazinon in common carp, Cyprinus carpio. African Journal of Biotechnology. Vol. 10, pp: 13852-13859.
  4. Al-Ghanim, K.A., 2012. Acute toxicity and effects of sub lethal malathion exposure on biochemical and haematological parameters of Oreochromis niloticus Scientific Research & Essays. Vol. 7, No. 16, pp: 1674-1680.
  5. Bernfeld, P., 2014. Enzymes of starch degradation and synthesis. Advances in enzymology and related areas of molecular biology. Vol. 12, No. 3, pp: 379-428.
  6. Cagauan, A.G.; Tayaban, R.H.; Somga, J.R. and Bartolome, R.M., 2004. Effect of aflatoxin contaminated feeds in Nile tilapia (Oreochromis niloticus L.). In Abstract of the 6th international symposium on tilapia in aquaculture (ISTA 6) section: health management and diseases Manila, Philippines. Vol. 12, 16 p.
  7. Chen, H.Y. and Rawlings, R., 2008. The truth of mycotoxin contamination of feed in Asia region. China Poult. Vol. 30, No. 16, pp: 33-35.
  8. Diamantino, T.C., 2001. Lactate dehydrogenase activity as an effect criterion in toxicity tests with Daphnia magna straus. Chemosphere. Vol. 45, No. 4-5, pp: 553-560.
  9. Dirican, S., 2015. A review of effects of aflatoxins in aquaculture. Appl Res J. Vol. 1, pp: 192-196.
  10. El-Gawad E.A.A. and Hamid, O.M.A., 2014. Effect of vitamin C dietary supplementation in reducing the alterations induced by fenitrothion in Oreochromis niloticus. Fish physiology and biochemistry. Vol. 40, No. 3, pp: 787-796.
  11. El-Nezami, H.; Kankaanpaa, P.; Salminen, S. and Ahokas, J., 1998. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food and chemical toxicology. Vol. 36, No. 4, pp: 321-326.
  12. Fan, Y.; Liu, L.; Zhao, L.; Wang, X.; Wang, D.; Huang, C.; Zhang, J.; Ji, C. and Ma, Q., 2018. Influence of Bacillus subtilis ANSB060 on growth, digestive enzyme and aflatoxin residue in Yellow River carp fed diets contaminated with aflatoxin B1. Food and chemical toxicology. Vol. 113, pp: 108-114.
  13. Farrell, A.P.; Stevens, E.D.; Cech, J.J. and Richards, J.G., 2011. Encyclopedia of fish physiology: From genome to environment. Academic Press, Elsevier, London. 2163 p.
  14. Greco, M.; Pardo, A. and Pose, G., 2015. Mycotoxigenic fungi and natural co-occurrence of mycotoxins in rainbow trout (Oncorhynchus mykiss) feeds. Toxins. Vol. 7, No. 11, pp: 4595-4609.
  15. Hamed, H.S., 2015. Impact of a short-term malathion exposure of Nile tilapia, (Oreochromis niloticus): the protective role of selenium. International Journal of Environmental Monitoring and Analysis. Vol. 3, pp: 30-37.
  16. Hormisch, D.; Brost, I.; Kohring, G.W.; Giffhorn, F.; Kroppenstedt, R.M.; Stackebradt, E.; Färber, P. and Holzapfel, W.H., 2004. Mycobacterium fluoranthenivorans sp. nov., a fluoranthene and aflatoxin B1 degrading bacterium from contaminated soil of a former coal gas plant. Systematic and applied microbiology. Vol. 27, No. 6, pp: 653-660.
  17. Huang, Y.; Han, D.; Zhu, X.; Yang, Y.; Jin, J.; Chen, Y. and Xie, S., 2011. Response and recovery of gibel carp from subchronic oral administration of aflatoxin B1. Aquaculture. Vol. 319, No. 1-2, pp: 89-97.
  18. Hummel, B.C., 1959. A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Canadian journal of biochemistry and physiology. Vol. 37, No. 12, pp: 1393-1399.
  19. Hussain, D.; Mateen, A. and Gatlin III, D.M., 2017. Alleviation of aflatoxin B1 (AFB1) toxicity by calcium bentonite clay: Effects on growth performance, condition indices and bioaccumulation of AFB1 residues in Nile tilapia (Oreochromis niloticus). Aquaculture. Vol. 475, pp: 8-15.
  20. Imani, A.; Bani, M.S.; Noori, F.; Farzaneh, M. and Moghanlou, K.S., 2017. The effect of bentonite and yeast cell wall along with cinnamon oil on aflatoxicosis in rainbow trout (Oncorhynchus mykiss): Digestive enzymes, growth indices, nutritional performance and proximate body composition. Aquaculture. Vol. 476, pp: 160-167.
  21. Jadi, E.; Movahedinia, A.; Safahie, A.; Dezhandian, S. and Halajian, A., 2015. Study of the effects of diazinon pesticides on some of the biochemical parameters of serum of Caspian Sea fish. Journal of Animal Scienc. Vol. 28, No. 9, pp: 274-281.
  22. Jantrarotai, W. and Lovell, R.T., 1990. Subchronic toxicity of dietary aflatoxin B1 to channel catfish. Journal of Aquatic Animal Health. Vol. 2, No. 4, pp: 248-254.
  23. Khageh, GH.H. and Peyghan, R., 1386. Evaluation of some blood serum biochemical parameters of rainbow trout (Oncorhynchus mykiss) cultured in earthen ponds. Journal of Veterinary Research. Vol. 62, pp: 203-197.
  24. Knox, D.; Cowey, C.B. and Adron, J.W., 1981. The effect of low dietary manganese intake on rainbow trout (Salmo gairdneri). British Journal of Nutrition.Vol. 46, pp: 495-501.
  25. Ktari, N.; Khaled, H.B.; Nasri, R.; Jellouli, K.; Ghorbel, S. and Nasri, M., 2012. Trypsin from zebra blenny (Salaria basilisca) viscera: Purification, characterisation and potential application as a detergent additive. Food Chemistry. Vol. 130, No. 3, pp: 467-474.
  26. Lillehoj, E.B.; Ciegler, A. and Hall, H.H., 1967. Aflatoxin B1 uptake by Flavobacterium aurantiacum and resulting toxic effects. Journal of Bacteriology. Vol. 93, No. 1, pp: 464-471.
  27. Martínez, M.P.; González Pereyra, M.L.; Fernandez Juri, M.G.; Poloni, V. and Cavaglieri, L., 2018. Probiotic characteristics and aflatoxin B1 binding ability of Debaryomyces hansenii and Kazaschtania exigua from rainbow trout environment. Aquaculture research. Vol. 49, No. 4, pp: 1588-1597.
  28. Martinez-Porchas M.; Martinez-Cordova, L.F. and Ramos-Eneiquez, R., 2009. Cortisol and Glucose: Reliable indicators of fish stress? Pan-American Journal of Aquatic Sciences. Vol. 4, No. 2, pp: 158-178.
  29. Matejova, I.; Svobodova, Z.; Vakula, J.; Mares, J. and Modra, H., 2017. Impact of mycotoxins on aquaculture fish species: a review. Journal of the world aquaculture society. Vol. 48, No. 2, pp: 186-200.
  30. Matejova, I.; Vicenova, M.; Vojtek, L.; Kudlackova, H.; Nedbalcova, K.; Faldyna, M.; Sisperova, E.; Modra, H. and Svobodova, Z., 2015. Effect of the mycotoxin deoxynivalenol on the immune responses of rainbow trout (Oncorhynchus mykiss). Veterinarni Medicina. Vol. 60, No. 9, pp: 57-68.
  31. Nespolo, R.F. and Rosenmann, M., 2002. Intraspecific allometry of haematological parameters in Basilichthys australis. Journal of Fish Biology. Vol. 60, No. 5, pp: 1358-1362.
  32. Nomura, H.; Ogiso, M.; Yamashita, M.; Takaku, H.; Kimura, A.; Chikasou, M.; Nakamura, Y.; Fujii, S.; Watai, M. and Yamada, H., 2011. Uptake by dietary exposure and elimination of aflatoxins in muscle and liver of rainbow trout (Oncorhynchus mykiss). Journal of agricultural and food chemistry. Vol. 59, No. 9, pp: 5150-5158.
  33. Panigrahi, A.; Kiron, V.; Puangkaew, J.; Kobayashi, T.; Satoh, S. and Sugita, H., 2005. The viability of probiotic bacteria as a factor influencing the immune response in rainbow trout Oncorhynchus mykiss. Aquaculture. Vol. 243, No. 1-4, pp: 241-254.
  34. Peltonen, K.D.; El‐Nezami, H.S.; Salminen, S.J. and Ahokas, J.T., 2000. Binding of aflatoxin B1 by probiotic bacteria. Journal of the Science of Food and Agriculture. Vol. 80, No. 13, pp: 1942-1945.
  35. Rios, F.S.; Kalinin, A.L. and Rantin, F.T., 2002. The effects of long-term food deprivation on respiration and haematology of the neotropical fish Hoplias malabaricus. Journal of Fish Biology. Vol. 61, No. 1, pp: 85-95.
  36. Saber, N.A., 1995. Depression of protein synthesis in tilapia by aflatoxin. Bull. Nat. Inst. Of Oceanogr. Egypt. Vol. 21, pp: 631-638.
  37. Sahoo, P.K. and Mukherjee, S.C., 2001. Effect of dietary β-1, 3 glucan on immune responses and disease resistance of healthy and aflatoxin B1-induced immunocompromised rohu (Labeo rohita Hamilton). Fish & Shellfish Immunology. Vol. 11, No. 8, pp: 683-695.
  38. Santacroce, M.P.; Conversano, M.C.; Casalino, E.; Lai, O.; Zizzadoro, C.; Centoducati, G. and Crescenzo, G., 2008. Aflatoxins in aquatic species: metabolism, toxicity and perspectives. Reviews in Fish Biology and Fisheries. Vol. 18, No. 1, pp: 99-130.
  39. Selim, K.M.; El-hofy, H. and Khalil, R.H., 2014. The efficacy of three mycotoxin adsorbents to alleviate aflatoxin B 1-induced toxicity in Oreochromis niloticus. Aquaculture International. Vol. 22, No. 2, pp: 523-540.
  40. Shahidi Yasaghi, S.A.; Mazandarani, M.; Ghorbani, A.; Saraei, H.: Ghorbani, R. and Soleimani, N., 1387. Determination of normal values of some blood serum factors (Electrolyte and nonelectrolyte) of Acipenser persicus. Journal of Fisheries. Vol. 2, No. 1, pp: 25-32.
  41. Shihabi, Z.K. and Bishop, C., 1971. Simplified turbidimetric assay for lipase activity. Clinical chemistry. Vol. 17, No. 12, pp: 1150-1153.
  42. Silva, J.F.; Espósito, T.S.; Marcuschi, M.; Ribeiro, K.; Cavalli, R.O.; Oliveira, V. and Bezerra, R.S., 2011. Purification and partial characterisation of a trypsin from the processing waste of the silver mojarra (Diapterus rhombeus). Food chemistry. Vol. 129, No. 3, pp: 777-782.
  43. Suzer, C.; Çoban, D.; Kamaci, H.O.; Saka, Ş.; Firat, K.; Otgucuoğlu, Ö. and Küçüksari, H., 2008. Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on growth performance and digestive enzyme activities. Aquaculture. Vol. 280, pp: 140-145.
  44. Tejada-Castaneda, Z.I.; Avila-Gonzalez, E.; Casaubon Huguenin, M.T.; Cervantes-Olivares, R.A.; Vásquez Peláez, C.; Hernandez-Baumgarten, E.M. and Moreno Martínez, E., 2008. Biodetoxification of aflatoxin contaminated chick feed. Poultry science. Vol. 87, No. 8, pp: 1569-1576.
  45. Teniola, O.D.; Addo, P.A.; Brost, I.M.; Färber, P.; Jany, K.D.; Alberts, J.F.; Van Zyl, W.H.; Steyn, P.S. and Holzapfel, W.H., 2005. Degradation of aflatoxin B1 by cell free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM44556T. International journal of food microbiology. Vol. 105, No. 2, pp: 111-117.
  46. Topic Popovic, N.; Strunjak‐Perovic, I.; Sauerborn Klobucar, R.; Barisic, J.; Jadan, M.; Kazazic, S.; Kesner Koren, I.; Prevendar Crnic, A.; Suran, J.; Beer Ljubic, B. and Matijatko, V., 2017. The effects of diet supplemented with Lactobacillus rhamnosus on tissue parameters of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture research. Vol. 48, No. 5, pp: 2388-2401.
  47. Wang, X.; Wang, Y.; Li, Y.; Huang, M.; Gao, Y.; Xue, X.; Zhang, H.; Encarnação, P.; Santos, G.A. and Gonçalves, R.A., 2016. Response of yellow catfish (Pelteobagrus fulvidraco) to different dietary concentrations of aflatoxin B1 and evaluation of an aflatoxin binder in offsetting its negative effects. Ciencias Marinas. Vol. 42, No. 1, pp: 15-29.
  48. Yanbo, W. and Zirong, X., 2006. Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Animal feed science and technology. Vol. 127, pp: 283-292.
  49. Ziaei-Nejad, S.; Rezaei, M.H.; Takami, G.A.; Lovett, D.L.; Mirvaghefi, A.R. and Shakouri, M., 2006. The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp (Fenneropenaeus indicus). Aquaculture. Vol. 252, pp: 516-524.