تأثیر دو پربیوتیک ای مکس اولترا و سلماناکس مایع به صورت تلقیح بر کیفیت آب، عملکرد رشد و ترکیبات لاشه بچه ماهیان انگشت قد کپورمعمولی (Cyprinus carpio) در سیستم بیوفلاک

نوع مقاله : تغذیه

نویسندگان

گروه شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبدکاووس، گنبدکاووس، ایران

چکیده

مطالعه حاضر باهدف بررسی تاثیر دو پربیوتیک تجاری ای مکس اولترا و سلماناکس مایع در تلقیح سیستم بیوفلاک (BFT) بر پارامترهای کیفی آب، عملکرد رشد، کارایی تغذیه و ترکیبات شیمیایی لاشه­ی بچه ­ماهیان کپور معمولی (Cyprinus carpio) انجام شد. تعداد 240 عدد بچه ­ماهی کپور معمولی با میانگین وزنی 0/70±4/09 گرم با دو غلظت 0/1 و 0/2 میلی­ گرم از هر یک از دو پربیوتیک مذکور در هر لیتر از سیستم بیوفلاک به ­همراه یک گروه شاهد که فاقد هر گونه ماده افزودنی بود، در قالب طرح کاملاً تصادفی به­ مدت 40 روز غذادهی شدند. در پایان دوره آزمایش، نتایج تفاوت معنی ‌داری در پارامترهای کیفی آب در تیمارهای تغذیه کرده از پربیوتیک در سیستم بیوفلاک در مقایسه با گروه شاهد نشان داد (0/05>p). اندازه­ گیری پارامترهای رشد شامل: وزن نهایی، طول نهایی، سرعت رشد وزنی، سرعت رشد طولی، نسبت کارایی پروتئین، نسبت کارایی چربی و ضریب تبدیل غذایی نیز دارای اختلافی معنی ­داری در مقایسه با گروه شاهد بودند (0/05>p). بیش ­ترین میزان پروتئین خام لاشه (66/61 درصد) و کم ­ترین درصد چربی خام لاشه (17/89 درصد) نیز در تیمار تغذیه کرده از 0/2 میلی ­لیتر پربیوتیک سلماناکس مایع تلقیح شده در هر لیتر از سیستم بیوفلاک به ثبت رسید. در مجموع، نتایج این تحقیق نشان داد که استفاده از پربیوتیک ‌های ای مکس ­اولترا و سلماناکس به صورت تلقیح به سیستم آب پرورش بچه­ ماهیان کپور معمولی به صورت تکنولوژی بیوفلاک، دارای تأثیرات مثبتی بر پارامترهای کیفی آب، عملکرد رشد، کارایی تغذیه و ترکیبات شیمیایی لاشه این گونه دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of two prebiotic (A-Max Ultra and Celmanax liquid) inoculation in water quality, growth performance and carcass composition of common carp (Cyprinus carpio) fingerlings in biofloc system

نویسندگان [English]

  • Arezo Khosravi Najafabadi
  • Hojatillah Jafaryan
  • Hossein Adineh
  • Mohammad Harsij
Fisheries Department, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran
چکیده [English]

The aim of this studieswas to investigate the effect of tow commercial prebiotic including a-Max ultra and liquid Celmanax in biofloc technology (BFT) based systems on water quality parameters, growth performance, feeding efficiency and carcass composition of Cyprinus carpio fry. For these porpoise, a number of 240 C. carp fry with initial mean weight 4.09±0.70 g (±SD) in a completely randomized design was carried out with inoculation of 0.1 and 0.2 ml each of the prebiotics per liters of biofloc system and a control that was devoid of any substance for 40 days. At the end of experiments, a significant difference was observed in water quality parameters in the treatments of biofloc systems (P>0.05). Measurements of growth parameters including: final weight, final length, velocity of weight, velocity of length, protein efficiency ratio, lipid efficiency ratio and feed conversion efficiency had a significant differences with control group (P<0.05). Maximum of carcass crude protein (66.61%) and minimum of crude lipid (17.89%) was shown in a biofloc system with inoculation of 0.2 ml/liter of liquid Celmanax. The protein and lipid efficiency ratio had a significantly increased in experimental prebiotic treatments (P<0.05). In conclusion, the result of these study indicated that the used of A-Max Ultra and liquid Celmanax prebiotics via inoculation into water system of common carp rearing in a biofloc system had a positive effects on water quality parameters, growth performance, feeding efficiency and carcasses composition in this species.

کلیدواژه‌ها [English]

  • Common Carp
  • Biofloc
  • Prebiotic
  • Inoculation
  • Ammonia nitrogen
  • Crude protein
  1. اکرمی، ر.؛ چیت­ ساز، ح.؛ رزاقی منصور، م. و قاسم ­پور علمدار، ا.، 1392. تأثیر پربیوتیک ای ­مکس بر شاخص ­های رشد، بازماندگی و ترکیب بدن قزل ­آلای رنگین ‌کمان (Oncorhynchus mykiss). مجله علوم تکثیر و آبزی ­پروری. شماره 1، صفحات 9 تا 20.
  2. ایری، م.؛ بیواره، م.و.؛ رنجدوست، م.؛ جفریان، س. و جعفریان، ح.، 1396. بررسی اثرات سطوح مختلف پربیوتیک ای­ مکس اولترا (مخمر Saccharomyces cerevisiae) بر پارامترهای رشد، بقا، کارایی تغذیه و مقاومت در برابر استرس­ های محیطی در بچه­ ماهیان نورس کپور معمولی (Cyprinus carpio Linnaeus. 1758). مجله بهره ­برداری و پرورش آبزیان. دوره 7، شماره 1، صفحات 11 تا 25.
  3. بخشی، ف.؛ ملک ­زاده­ ویایه، ر. و حسین ­نجد گرامی، ا.، 1392. بررسی بازدهی استفاده از سیستم تولید توده زیستی (Biofloc) در پرورش متراکم ماهی کپور معمولی .(Cyprinus carpio) مجله محیط ‌زیست جانوری. دوره 6، شماره 3، صفحات 45 تا 52.
  4. بیواره، م.ح. و جعفریان، ح.، 1395. تعیین عملکرد پارامترهای رشد، بازماندگی و مقاومت در برابر استرس­ های محیطی در لاروهای کپور معمولی F1 (Cyprinus carpio) تغذیه ‌شده با سطوح مختلف مخمر Saccharomyces cerevisiae. مجله علوم تکثیر و آبزی پروری. دوره 4، شماره 10، صفحات 11 تا 33.
  5. بیواره، م.ر. و جعفریان، ح.، 1397. تأثیر دو پربیوتیک تجاری ای مکس، سلماناکس مایع و مخلوط آن‌ها باهم در جیره غذایی بچه ماهیان نورس کپور معمولی (Cyprinus carpio) بر عملکرد رشد، کارایی تغذیه و میزان مقاومت در برابر استرس‌ های محیطی. مجله توسعه آبزی ‌پروری. دوره 12، شماره 4، صفحات 1 تا 16.
  6. جعفریان، س.؛ قاسم­ زاده، ج. و جعفریان، ح.، 1395. بررسی تأثیر پروبیوتیک مولتی ­بهسیل و پربیوتیک بهسام بر عملکردهای تغذیه، میزان انرژی اتلافی و نرخ ترشح آمونیاک و اوره در نوزادان ماهی آمور (Ctenophyryngodon idell). فصلنامه تغذیه و بیوشیمی آبزیان. دوره 3، شماره 1، صفحات 1 تا 15.
  7. جویباری، م.؛ قبادی، ش. و وطن ‌دوست، ص.، 1396. تأثیر سطوح مختل پربیوتیک A-Max بر شاخص ­های رشد، بازماندگی و ترکیبات لاشه در بچه ­ماهی کپور معمولی  (Cyprinus carpio). مجله توسعه آبزی ­پروری. دوره 11، شماره 1، صفحات 63 تا 75.
  8. رنجدوست، م.؛ جعفریان، ح.ا.؛ هرسیج، م. و قلی­ پورکنعانی، ح.، 1396. اثر پری‌بیوتیک سلماناکس بر پارامترهای خون بچه­ ماهی کپورمعمولی (1758 ,Cyprinus carpio L. Linnaeus) در برابر تنش حمل ‌و نقل. مجله محیط ‌زیست جانوری. دوره 9، شماره 4، صفحات 214 تا 207.
  9. رنجدوست، م.: جعفریان، ح.ا.؛ هرسیج، م. و قلی ­پورکنعانی، ح.، 1397. تأثیر پربیوتیک سلماناکس و پنج گونه از پروبیوتیک‌های باسیلی بر کاهش استرس حمل ‌و نقل کپور معمولی (Cyprinus carpio) در شوری‌ های مختلف. مجله علوم آبزی ‌پروری. دوره 6، شماره 9، صفحات 39 تا 50.
  10. خانجانی، م.ح.؛ علیزاده، م.؛ سجادی، م.م. و سوری نژاد، ا.، 1394. تاثیر منابع مختلف کربن بر کیفیت آب، عملکرد رشد و بقای میگوی سفید غربی (Litopenaeus vannamei Boone, 1931). در سیستم پرورش بدون تعویض آب. مجله علمی شیلات ایران. دوره 24، شماره 3، صفحات 77 تا 91.
  11. Akrami, R.; Karimabadi, K.; Mohammadzadeh, H. and Ahmadifar, E., 2009. Effect of dietary mannanoligosaccharide on growth performance, survival, body composition and salinity stress resistance in Kutum (Rutilus frisii kutum) fry stage. Journal of Marine Science and Technology. Vol. 8, pp: 47-57.
  12. Anand, P.S.; Kohli, M.P.S.; Kumar, S.; Sundaray, J.K.; Roy, S.D.; Venkateshwarlu, G.; Sinha, A. and Pailan, G.H., 2014.  Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture. Vol. 418-419, pp: 108-115.
  13. Anand, P.S.S.; Kumar, S.; Panigrahi, A.; Ghoshal, T.K.; Dayal, J.S.; Biswas, G.; Sundaray, J.K.; De, D.; Raja, R.A.; Deo, A.D.; Pillai, S.M. and Ravichandran, P., 2013. Effects of C: N ratio and substrate integration onperiphyton biomass, microbial dynamics and growth of Penaeus monodon juveniles. Aquaculture International. Vol. 21, pp: 511-524.
  14. AOAC. 1990. In: Horwitz, W., (Ed). Official Methods of Analysis of Official Analytical Chemists (AOAC). Vol. 1, 15th ed. Assoc.Official Analytical Chemists. Washington DC. 1963 p.
  15. APHA. 1998. Standard Methods for the Examination of the Water and Wastewater, 22nd ed. American Public Health Association, Washington, DC.
  16. Asaduzzaman, M.; Wahab, M.A.; Verdegem, M.C.J.; Huque, S.; Salam, M.A. and Azim, M.E., 2008. C/N ratio control and substrate addition for periphytondevelopment jointly enhance freshwater prawn Macrobrachium rosenbergiiproduction in ponds. Aquaculture. Vol. 280, pp: 117-123.
  17. Atar, H.H. and Ates, M., 2009. The effects of commercial diet supplemented withmannanoligosaccharide (MOS) and vitamin B12 on the growth and body composition of thecarp (Cyprinus carpio L. 1758). Journal of Animal and Veterinary Advances. Vol. 8, pp: 2251-2255.
  18. Avnimelech, Y., 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture. Vol. 176, No. 3, pp: 227-235.
  19. Avnimelech, Y., 2007. Feeding with microbial flocs by tilapia in minimaldischarge bioflocs technology ponds. Aquaculture. Vol. 264, No. 1, pp: 140-147.
  20. Avnimelech, Y., 2009. Biofloc technology a practical guide book. The world aquaculture society, Baton Rouge, Louisiana. (United States).
  21. Avnimelech, Y., 2012. Biofloc technology: a practical guide book, 2nd edition. The world aquaculture society, Baton Rouge, Louisiana, United States. 272 p.
  22. Azim, M.E. and Little, D.C., 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture. Vol. 283, pp: 29-35.
  23. De Schryver, P. and Verstraete, W., 2009. Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batchreactors. Bioresource Technology. Vol. 100, No. 3, pp: 1162-1167.
  24. De Schryver, P.; Crab, R.; Defoirdt, T.; Boon, N. and Verstraete, W., 2008. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture. Vol. 277, pp: 125-137.
  25. Dimitroglou, A.; Merrifield, D.L.; Spring, P.; Sweetman, J.; Moate, R. and Davies, S.J., 2010. Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilization, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). Aquaculture. Vol. 300, pp: 182-188.
  26. Ekasari, J.; Angela, D.; Waluyo, S. H.; Bachtiar, T.;Surawidjaja, E. H.; Bossier, P. and Schryver, P., 2014. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture. Vol. 426-427, pp: 105-111.
  27. Emerenciano, M.; Ballester, E.L.C.; Cavalli, R.O. and Wasielesky, W., 2012. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research. Vol. 43, pp: 447-457.
  28. Emerenciano, M.; Gaxiola, G. and Cuzon, G., 2013. Biofloc Technology: A reviewfor aquaculture application and animal food industry. Open access peer-reviewed chapter. Submitted: December 6th 2011 Reviewed: September 28th 2012. Published:  30th.  pp: 301-328. (available in http://dx.doi.org/10.5772/53902).
  29. Food and Agriculture Organization of the United Nations (FAO). 2016. The Stateof World Fisheries and Aquaculture, Contributing to food security and nutrition for all. Rome. 191 p. Available at http://www.fao.org.
  30. Food and Agriculture Organization of the United Nations (FAO). 2012. Fisheries global information system. FAO Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations Rome.
  31. Gibson, G.R., 1998. Dietary modulation of the Human Gut Microflora using the prebiotics oligofructose and Inulin. Nutritional and Health Benefits of Inulin and Oligofructose conference, May 18-19, Bethesda. pp: 25-27.
  32. Gultepe, N.; Salnur, S.; Hossu, B. and Hisar, O., 2010. Dietary supplementation with Mannanoligosaccharides (MOS) from Bio-Mos enhances growth parameters and digestive capacity of gilthead sea bream (Sparus aurata). Aquaculture Nutrition. Vol. 17, pp: 482-487.
  33. Hargreaves, J.A., 1998. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture. Vol. 66, No. 3-4, pp: 181-212.
  34. Haridas, H.; Verma, A.K.; Rathore, G.; Prakash, C.; Sawant, P.B. and Babitha Rani, A.M., 2017. Enhanced growth and immuno‐physiological response of Genetically Improved Farmed Tilapia in indoor biofloc units at different stocking densities. Aquaculture Research. Vol. 48, pp: 4346-4355.
  35. Helland, S.J. Grisdale, B.  and Nerland, S., 1996. A simple method for the measurement of daily feed intake of groups of fish in tanks. Aquaculture. Vol. 139, pp: 157-163.
  36. Hepher, B., 1988. Nutrition of Pond Fish. Cambridge Univ. Press, Cambridge, UK. 388 p.
  37. Hevroy, E.M.; Espe, M.; Waagbo, R.; Sandness, K.; Rund, M. and Hemer,G.I., 2005. Nutrition utilization in Atlantic salmon (Salmo salar) fed increased level of fish protein hydrolysate during a period of fast growth. Aquaculture Nutrition. Vol. 11, pp: 301-313.
  38. Irshad Ahmad, H.; Verma, A.K.; Babitha Rani, A.M.; Rathore, G.; Saharan, N. and Gora, A.H., 2016. Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture. Vol. 456, pp: 61-67.
  39. Kim, S.K.; Pang, Z.; Seo, H.C.; Cho, Y.R.; Samocha, T. and Jang, I.K., 2014. Effect of bioflocs on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei postlarvae. Aquaculture Research. Vol. 45, pp: 362-371.
  40. Lashkarbolouki, M.; Jafaryan, H.; Keramat, A.; Farhangi, M. and Adineh, H., 2012. The effect of yeast enriched (Saccharomyces cerevisiae) Daphnia magna on growth and stress resistance in Persian sturgeon (Acipenser persicus) Larvae. Iranian journal of natural resources. Vol. 64, No. 4, pp: 345-355.
  41. Leonard, N.; Blancheton, J.P. and Guiraud, J.P., 2000. Populations of heterotrophic bacteria in an experimental recirculating aquaculture system. Aquacultural Engineering. Vol. 22, No. 1, pp: 109-120.
  42. Lim, C.; Klesius, P.H.; Li, M.H. and Robinson, E.H., 2000. Interaction between dietary levels of iron and vitamin C on growth, haematoloy, immune response and resistance of channel catfish (Ictaluruspunctatus) to Edwardsiella ictaluri challenge. Aquaculture. Vol. 185, pp: 313-327.
  43. Long, L.; Yang, J.; Li, Y.; Guan, C. and Wu, F., 2015. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (oreochromis niloticus). Aquaculture. Vol. 448, pp: 135-141.
  44. Luo, G.; Gao, Q.; Wang, C.; Liu, W.; Sun, D.; Li, L. and Tan, H., 2014. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture. Vol. 422, pp: 1-7.
  45. Magondu, E.; Charo-Karisa, H. and Verdegem, M.C.J., 2013. Effect of C/N ratio levels and stocking density of Labeo victorianus on pond environmental quality using maize flour as a carbon source. Aquaculture. Vol. 410, No. 411, pp: 157-163.
  46. Mahanand, S.S.; Moulick, S. and Srinivasa Rao, P., 2013. Water Quality and Growth of Rohu, Labeo rohita, in a Biofloc System. Journal of Applied Aquaculture. Vol. 25, pp: 121-131.
  47. Miranda-Filho, K.C.; Pinho, G.L.L. and Wasielesky, W.J., 2009. Long-term ammonia toxicity to the pink-shrimp Farfantepenaeus paulensis. Comp.Biochem. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology. Vol. 150, No. 3, pp: 377-382.
  48. Najdegerami, E.; Bakhshi, F. and Lakani, F.B., 2016. Effects of bioflocon growth performance, digestive enzyme activities and liver histology ofcommon carp (Cyprinus carpio L.) fingerlings in zero-water exchangesystem, Fish Physiology and Biochemistry. Fish Physiology and Biochemistry. Vol. 42, No. 2, pp: 457-465.
  49. Prabu,E.; Rajagopalsamy, C.B.T.; Ahilan, B.; Santhakumar, R. and Thangarani, A.J., 2017. Influence of Biofloc meal and Lysine supplementation on the growth performances of GIFT tilapia. Journal of Entomology and Zoology Studies. Vol. 5, No. 5, pp: 35-39
  50. Qiao, S.F.; Liu, H.Y. and Qi, X.Y., 2006. The accumulation and toxicity of ammonia nitrogen in aquaculture water. Hebei Fish. Vol. 1, pp: 20-22.
  51. Ray, A.J.; Seaborn, G.; Leffler, J.W.; Wilde, S.B.; Lawson. A. and Browdy, C.L., 2010. Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solidsmanagement. Aquaculture. Vol. 310, pp: 130-138.
  52. Ringo, E. and Gatesoupe, F.J., 1998. Lactic Acid Bacteria in fish: a review. Aquaculture. Vol. 160, pp: 177-203.
  53. Ringo, E. and Vadestin, O., 1998. Colonization of Vibrio Pelagius and Aeromonas caviae in early developing turbot, Scophthalmous maximus (L.) larvae. Journal of Applied Microbiology. Vol. 84, pp: 227-233.
  54. Rodrigues, M.S.; Bolívar, N.; Legarda, E.C.; Guimarães, A.M.; Guertlerd, C.; do Espírito Santo, C.M.; Mouriño, J.L.P.; Seiffert, W.Q.; Fracalossic, D.M. and do Nascimento Vieira, F., 2018. Mannoprotein dietary supplementation for Pacific white shrimp raised in biofloc systems. Aquaculture. Vol. 488, No. 10, pp: 90-95.
  55. Sontakke, R. and Haridas, H., 2018. Economic Viability of Biofloc Based System for the Nursery Rearing of Milkfish (Chanos chanos). International journal of current microbiology applied science. Vol. 7, No. 8, pp: 2960-2970.
  56. Sotoudeh, E.; Abedian kenari, A. and Habibi Rezaei, M., 2010. Growth response, body composition and fatty acid profile of Caspain brown trout (Salmo trutta Caspius) juvenile fed diets containing different levels of soybean phosphatidylcholine. Aquaculter International. Aquaculture International. Vol. 19, No. 4, pp: 611-623.
  57. Taw, N., 2010. Biofloc technology expanding at white shrimp farms. GlobalAdvocate may/june, 24–26 (available in http://www.gaalliance.org/mag/May _June 2010.pdf).
  58. Wang, G.; Yu, E.; Xie, J.; Yu, D.; Li, Z.; Luo, W.; Qiu, L. and Zheng, Z., 2015. Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture. Vol. 443, pp: 98-104.
  59. Wang, J.C.; Chang, P.S. and Chen, H.Y., 2008. Differential time-series expression of immunerelated genes of Pacific white shrimp Litopenaeus vannamei in response to dietary inclusion of β-1,3glucan. Fish and Shellfish Immunology. Vol. 24, pp: 113-121.
  60. Widanarni, W.; Ekasari, J. and Maryam, S., 2012. Evaluation of biofloc technology application on water quality and production performance of Red Tilapia Oreochromis sp. Cultured at different stocking densities. HAYATI Journal of Biosciences. Vol. 19, pp: 73-80.
  61. Xia, Y.; Yu, E.M. and Xie, J., 2012. Analysis of bacterial community structure of bio-floc by PCR-DGGE. Journal of Fishery Sciences of China. Vol. 36, No. 10, pp: 1563-1571.
  62. Xu, W.J. and Pan, L.Q., 2014. Evaluation of dietary protein level on selectedparameters of immune and antioxidant systems, and growth performance ofjuvenile Litopenaeus vannamei reared in zero-water exchange biofloc basedculture tanks. Aquaculture. Vol. 426, No. 427, pp: 181-188.
  63. Yuvarajan, P.; Felix, S.; Antony, C.; Gopalakannan, A.; Menaga, M. and Ezhilmathi, S., 2018. Nursery intensive rearing of GIFT tilapia in outdoor lined pond utilizing aerobic microbial floc technology (AMFT). Journal of Entomology and Zoology Studies. Vol. 6, No. 3, pp: 705-709.
  64. Zhang, N.; Luo, G.; Tan, H.; Liu, W. and Hou, Z., 2016. Growth, digestive enzyme activity and welfare of tilapia (Oreochromis niloticus) reared in a biofloc-based system with poly-β-hydroxybutyric as a carbon source. Aquaculture. Vol. 464, pp: 710-717.
  65. Zhao, Z.G.; Xu, Q.Y.; Luo, L.; Yin, J.S. and Wang, C.A., 2013. Effect of adding carbon source on growth of fish and water quality in Songpu mirror Carp (Cyprinus specularis Songpu) pond. Journal of Northeast Agricultural University. Vol. 44, No. 9, pp: 105-112.