بررسی تغییرات هماتولوژی و شاخص های استرس ماهی فیتوفاگ (Hypophthalmichthys molitrix) در مواجهه با غلظت های کشنده و تحت کشنده کلرید سرب

نوع مقاله : زیست شناسی (جانوری)

نویسندگان

1 باشگاه پژوهشگران جوان و نخبگان، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران

2 گروه شیلات، دانشکده شیلات و محیط‌ زیست دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

امروزه پیشرفت صنعت آبزی­ پروری، لزوم گسترش تشخیص سلامت ماهیان را بیش از پیش نمایان می ­سازد. شاخص ­های خونی بیومارکرهای مفیدی هستند که به ­منظور ارزیابی شرایط فیزیولوژیک آبزیان در پاسخ به استرس آلاینده ­ها به ­کار رفته و تغییرات درونی بدن ماهی را دقیقاً منعکس می ­کنند. این تحقیق با هدف بررسی تغییرات هماتولوژی و شاخص‌های استرس ماهی فیتوفاگ در مواجهه با غلظت‌های کشنده و تحت کشنده کلرید سرب انجام گرفت. در انجام پژوهش حاضر ابتدا غلظت نیمه ­کشنده (LC50) فلز سرب به ­میزان 38/09 میلی­ گرم­ در لیتر از طریق محاسبه تلفات ماهیان کپور نقره ­ای در معرض کلرید سرب در زمان‌های 24، 48، 72 و 96 ساعت با کمک آنالیز پروبیت تعیین شد. سپس با طراحی آزمایش جداگانه ­ای، کپور ماهیان نقره ­ای به­ مدت 96 ساعت در معرض تیمار کشنده و تحت ­کشنده کلرید سرب (10 و 50 درصد LC50 96h) و نیز یک گروه شاهد هر کدام با 3 تکرار قرار داده شد. پس از خونگیری، شاخص ­های هماتولوژی و بیوشیمیایی نظیر هماتوکریت، هموگلوبین، شاخص­ های گلبول قرمز، تعداد کل گلبول های سفید و قرمز و شمارش افتراقی گلبول­ های سفید، گلوکز، کورتیزول و پروتئین کل مورد بررسی قرار گرفت. نتایج کاهش معنی­دار گلبول قرمز، درصد هماتوکریت، هموگلوبین و هم­چنین افزایش میزان نوتروفیل را با افزایش میزان غلظت سم نشان داد. هم­ چنین برای شاخص ­های بیوشیمیایی نیز افزایش معنی­ دار میزان گلوکز وکورتیزول و نیز کاهش معنی ­دار پروتئین کل مشاهده شد. به ­طورکلی می ­توان بیان نمود که فلز سنگین سرب حتی در غلظت ­های تحت­ کشنده نیز آسیب­ های شدید فیزیولوژیک ایجاد نموده و منجر به القای استرس ثانویه می­ گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Study on hematological changes and stress indices of Silver carp (Hypophthalmichthys molitrix Valenciennes, 1884) during lethal and sublethal exposure to lead chloride

نویسندگان [English]

  • Saeid Shahbazi Naserabad 1
  • Seyeyd Aliakbar Hedayati 2
1 Young and Elite Researchers Club, Yasuj Branch, Islamic Azad University, Yasuj, Iran
2 Department of Fisheries, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Importance of the fish health diagnosis will be confirmed by aquaculture industrial development. Blood indices are useful biomarkers to assess the physiological status of aquaculture in response to applied stress and the changes in the fish body exactly in response to pollutants. In this study the lethal concentration of lead was determine in the 38.09 ppm through calculation of carp exposed to lead chloride at 24, 48, 72 and 96 hours with the probit analysis, then in a separate experiment, fish were exposed at the acute and subacute treatments of lead chloride for 96 hours (10 and 50 percent of LC50 96h) and a control group each with 3 replicates were placed.After sampling, hematological and biochemical indices such as hematocrit, hemoglobin, red blood cell, total number of white blood cells and red and differential count of blood cell, glucose, cortisol and total protein were studied. The results showed a significant reduction in red blood cells, hematocrit, hemoglobin and an increase in the number of neutrophils by increasing the concentration of the toxin (P<0.05). Also it was significantly increased of glucose, cortisol observed in biochemical parameters and also a significant reduction in total protein (P<0.05). As a result, it can be stated that heavy metal lead could have physiological lesion and secondary stress response in fihses even under sub acute concentrations.

کلیدواژه‌ها [English]

  • Pollution
  • Lethal Concentrations
  • Lead (Pb)
  • Carp Fish
  • Heavy Metal
  1. Adeyemo, O.K., 2007. Haematological profile of Clarias gariepinus (Burchell, 1822) exposed to lead. Turkish Journal of Fisheries and Aquatic Sciences. Vol. 7, No. 2, pp: 163-169.
  2. Almeida, J.A.; Novelli, E.L.B.; Silva, M.D.P. and Júnior, R.A., 2001. Environmental cadmium exposure and metabolic responses of the Nile tilapia, Oreochromis niloticus. Environmental Pollution. Vol. 114, No. 2, pp: 169-175.
  3. Andresen, B.D., 1986. Textbook of clinical chemistry (Vol. 486). Tietz, N.W., (ed.), Philadelphia et al.: Saunders. 146 p.
  4. Banaee, M.; Mirvagefei, A.R.; Rafei, G.R. and Amiri, B.M., 2008. Effect of sub-lethal diazinon concentrations on blood plasma biochemistry. International Journal of Environmental Research. Vol. 2, pp: 189-198.
  5. Ciftci, N.; Cicik, B.; Erdem, C. and Ay, O., 2008. Effects of lead concentrations on sera parameters and hematocrit levels in Anguilla anguilla (Linnaeus, 1758). Journal of Fisheries Sciences. Vol. 2, pp: 616-622.
  6. Cogun, H.Y. and Şahin, M., 2013. The effect of lead and zeolite on hematological and some biochemical parameters in Nile fish (Oreochromis niloticus). Current Progress Biological Research. Vol. 12, pp: 277-286.
  7. Das, P.C.; Ayyappan, S. and Jena J.K., 2006. Haematological changes in the three Indian major carps, Catla catla (Hamilton), Labeo rohita (Hamilton) and Cirrhinus mrigala (Hamilton) exposed to acidic and alkaline water pH. Aquaculture. Vol. 256, pp: 80-87.
  8. Drobkin, D.R., 1945. Crystallographic and optical properties of human hemoglobin: a proposal for the standardization of hemoglobin. American Journal of the Medical Sciences. Vol. 209, pp: 268-270.
  9. Engelsma, M.Y.; Hougee, S.; Nap, D; Hofenk, M.; Rombout, J.H.; van Muiswinkel, W.B. and Erburg-van Kemenade, B.L., 2003. Multiple acute temperature stress affects leucocyte populations and antibody responses in common carp, Cyprinus carpio L. Fish & shellfish immunology. Vol. 15, No. 5, pp: 397-410.
  10. Evans, G.O., 2008. Animal hematotoxicology: a practical guide for toxicologists and biomedical researchers. CRC Press. 224 p.
  11. Fantin, A.M.B.; Trevisan, P.; Pederzoli, A. and Bergomi, M., 1988. Effects of acute experimental pollution by lead on some haematological parameters in Carassius carassius (L.) var. auratus. Italian Journal of Zoology. Vol. 55, pp: 251-255.
  12. Fırat, O.; Cogun, H.Y.; Yüzereroğlu, T.A.; Gök, G.; Fırat, O.; Kargin, F. and Kötemen, Y.A., 2001. Comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiology and Biochemistry. Vol. 37, No. 3, pp: 657-666.
  13. Fırat, O. and Kargın, F., 2010. Individual and combined effects of heavy metals on serum biochemistry of Nile tilapia Oreochromis niloticus. Archives of environmental contamination and toxicology. Vol. 58, No. 1, pp: 151-157.
  14. Gagnon, A.; Jumarie, C. and Hontela, A., 2006. Effects of Cu on plasma cortisol and cortisol secretion by adrenocortical cells of rainbow trout (Oncorhynchus mykiss). Aquatic toxicology. Vol. 78, No. 1, pp: 59-65.
  15. Hodson, P.V.; Blunt, B.R.; Spry, D.J. and Austen, K., 1977. Evaluation of erythrocyte δ-amino levulinic acid dehydratase activity as a short-term indicator in fish of a harmful exposure to lead. Journal of the Fisheries Board of Canada. Vol. 34, No. 4, pp: 501-508.
  16. Hodson, P.V.; Whittle, D.M.; Wong, P.T.; Borgmann, U. and Thomas, R.L., 1984. Lead contamination of the Great Lakes and its potential effects on aquatic biota. In: Nriagu, J.O. Simmons, M.S. (ed.), Toxic contaminants in the Great Lakes. John Wiley and Sons, Indianapolis, In. Advances in Environmental Science and Technology. 527 p.
  17. Holcombe, G.W.; Benoit, D.A.; Leonard, E.N. and McKim, J.M., 1976. Long-term effects of lead exposure on three generations of brook trout (Salvelinus fontinalis). Journal of the Fisheries Board of Canada. Vol. 33, No. 8, pp: 1731-1741.
  18. Javed, M. and Usmani, N., 2015. Impact of heavy metal toxicity on hematology and glycogen status of fish: a review. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. Vol. 85, No. 4, pp: 889-900.
  19. Kaya, H.; Akbulut, M. and Yılmaz, S., 2015. Influence of sublethal lead concentrations on glucose, serum enzymes and ion levels in tilapia (Oreochromis mossambicus). In Proceedings of the 7th International Conference on Information and Communication Technologies in Agriculture. Food and Environment. pp: 858-866.
  20. Lal Shah, S., 2010. Hematological changes in Tinca tinca after exposure to lethal and sublethal doses of Mercury, Cadmium and Lead. Iranian Journal of Fisheries Sciences. Vol. 9, No. 3, pp: 434-443.
  21. Latif, A.; Khalid, M. and Ali, M., 2014. Evaluation of Toxic Stress of Copper Sulphate and Lead Nitrate on Hematological and Serum Biochemical Characteristics of Freshwater Cyprinid (Labeo rohita). International journal of current engineering and technology. Vol. 4, pp: 366-372.
  22. Malik, N.; Biswas, A.K.; Qureshi, T.A.; Borana, K. and Virha, R., 2010. Bioaccumulation of heavy metals in fish tissues of a freshwater lake of Bhopal. Environmental Monitoring and Assessment. Vol. 160, pp: 267-276.
  23. Martinez, C.B.R.; Nagae, M.Y.; Zaia, C.T.B.V. and Zaia, D.A.M., 2004. Acute morphological and physiological effects of lead in the neotropical fish Prochilodus lineatus. Brazilian Journal of Biology. Vol. 64, No. 4, pp: 797-807.
  24. Martins, J.; Oliva, T.L. and Vasconcelos, V., 2007. Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environment International. Vol. 33, No. 3, pp: 414-425.
  25. Mohiseni, M.; Asayesh, S.; Shafiee Bazarnoie, S.; Mohseni, F.; Moradi, N.; Matouri, M. and Mirzaee, N., 2016. Biochemical Alteration Induced by Cadmium and Lead in Common Carp via an Experimental Food Chain. Iranian Journal of Toxicology. Vol. 10, No. 4, pp: 25-32.
  26. Neff, J.M., 1985. Use of biochemical measurements to detect pollutant-mediated damage to fish. In Aquatic Toxicology and Hazard Assessment: Seventh Symposium. ASTM International.
  27. Oh, H.S.; Lee, S.K.; Kim, Y.H. and Roh, J.K., 1991. Mechanism of selective toxicity of diazinon to killfish (Oryzias latipes) and loach (Misgurnus Anguillicaudatus). Aquatic Toxicology and Risk Assesment. Vol. 14, pp: 343-353.
  28. Oladimeji, A.A. and Offem, B.O., 1989. Toxicity of lead to Clarias lazera, Oreochromis niloticus, Chironomus tentans and Benacus sp. Water, Air, and Soil Pollution. Vol. 44, pp: 191-201.
  29. Olaifa, F.E.; Olaifa, A.K. and Lewis, O.O., 2003. Toxic stress of lead on Clarias gariepinus (African catfish) fingerlings. African Journal of Biomedical Research. Vol. 6, No. 2, pp: 101-104.
  30. Ololade, I.A. and Oginni, O., 2010. Toxic stress and hematological effects of nickel on African catfish, Clarias gariepinus, fingerlings. Journal of environmental chemistry and Ecotoxicology. Vol. 2, No. 2, pp: 014-019.
  31. Remyla, S.R.; Ramesh, M.; Sajwan, K.S. and Kumar, K.S., 2008. Influence of zinc on cadmium induced haematological and biochemical responses in a freshwater teleost fish Catla catla. Fish physiology and biochemistry. Vol. 34, No. 2, pp: 169-174.
  32. Rose, W.L.; Nisbet, R.M.; Green, P.G.; Norris, S.; Fan, T.; Smith, E.H.; Cherr, G.N. and Anderson, S.L., 2006. Using an integrated approach to link biomarker responses and physiological stress to growth impairment of cadmium exposed larval topsmelt. Aquatic toxicology. Vol. 80, No. 3, pp: 298-308.
  33. Ruane, N.M.; Huisman, E.A. and Komen, J., 2001. Plasma cortisol and metabolite level profiles in two isogenic strains of common carp during confinement. Journal of fish biology. Vol. 59, No. 1, pp: 1-12.
  34. Sastry, K.V. and Rao, D.R., 1984. Effect of mercuric chloride on some biochemical and physiological parameters of the freshwater murrel, Channa punctatus. Environmental Research. Vol. 34, No. 2, pp: 343-350.
  35. Shahbazi, S.; Moëzzi, F.; Poorbagher, H. and Rostamian, N., 2015. Effects of Malathion Acute Toxicity on Behavioral and Haematological Parameters in Capoeta damascina (Cypriniformes: Cyprinidae). Journal of Chemical Health Risks. Vol. 5, No. 3, pp: 209-220.
  36. Shaluei, F.; Hedayati, A.; Jahanbakhshi, A. and Baghfalaki, M., 2012. Physiological responses of great sturgeon (Huso huso) to different concentrations of 2-phenoxyethanol as an anesthetic. Fish physiology and biochemistry. Vol. 38, No. 6, pp: 1627-1634.
  37. Shaluei, F.; Hedayati, A.; Jahanbakhshi, A.; Kolangi, H. and Fotovat, M., 2013. Effect of subacute exposure to silver nanoparticle on some hematological and plasma biochemical indices in silver carp (Hypophthalmichthys molitrix). Human & experimental toxicology. Vol. 32, No. 12, pp: 1270-1277.
  38. Shariati, F.; Sari, A.E.; Mashinchian, A. and Pourkazemi, M., 2011. Metallothionein as potential biomarker of cadmium exposure in Persian sturgeon (Acipenser persicus). Biological trace element research. Vol. 143, No. 1, pp: 281-291.
  39. Sprague, J.B., 1971. Measurement of pollutant toxicity to fish-III: Sublethal effects and safe concentrations. Water Research. Vol. 5, No. 6, pp: 245-266.
  40. Stoskopf, M.K., 1993. Clinical pathology of Carp, Gold fish and Koi in Fish Medicine. In: M.K. Stoskopf. Eds. W.B. Sounders Company. Philadelphia, USA. pp: 450-453.
  41. Thrall, M.A.; Weiser, G.; Allison, R. and Campbell, T.W., 2012. Veterinary hematology and clinical chemistry. John Wiley & Sons. 776 p.
  42. Van der Oost, R.; Beyer, J. and Vermeulen, N.P.E., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology. Vol. 13, No. 2, pp: 57-149.
  43. Vani, T.; Saharan, N.; Mukherjee, S.C.; Ranjan, R.; Kumar, R. and Brahmchari, R.K., 2001. Deltamethrin induced alterations of hematological and biochemical parameters in fingerlings of Catla catla (Ham.) and their amelioration by dietary supplement of vitamin C. Pesticide Biochemistry and Physiology. Vol. 101, No. 1, pp: 16-20.
  44. Verma, S.R.; Rani, S. and Dalela, R.C., 1982. Indicators of stress induced by pesticides in Mystus vittatus: haematological parameters. Indian Journal of Environmental Health. Vol. 24, pp: 58-64.
  45. Vinodhini, R. and Narayanan, M., 2008. Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp). International Journal of Environmental Science & Technology. Vol. 5, No. 2, pp: 179-182.