ارزیابی اقتصادی و تولید میگوی سفید غربی (1931,Penaeus vannamei Boone) در سیستم های آبزی پروری معمولی و توده ساز زیستی

نوع مقاله : تغذیه

نویسندگان

1 گروه علوم و مهندسی شیلات، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت، ایران

2 گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه سرا، ایران

3 مرکز تحقیقات ملی آبزیان آب های شور، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، بافق، ایران

4 گروه شیلات، دانشکده علوم و فنون دریایی و جوی، دانشگاه هرمزگان، بندرعباس، ایران

چکیده

در مطالعه حاضر عملکرد اقتصادی و تولید میگوی سفید غربی در سیستم ­های آبزی ­پروری سنتی و توده ­ساز زیستی مورد ارزیابی قرار گرفت. میگوی سفید غربی در مرحله جوانی با وزن 0/33± 2/56 گرم (میانگین ± انحراف از معیار) به­ مدت 5 هفته در ظروف فایبرگلاس با حجم آبگیری 180 لیتر و با تراکم یک گرم بیومس در لیتر در چهار تیمار شامل یک تیمار تعویض آب (100% غذادهی کنسانتره) و سه تیمار توده ­ساز به ترتیب با 100، 66/6 و 33/3% غذای کنسانتره (بدون تعویض آب) تغذیه شدند. براساس نتایج به ­دست آمده، تفاوت معنی­ داری در مقادیر پارامترهای شاخص ­های کیفی آب (0/05>P) و هم ­چنین بین عملکرد تولید و اقتصادی میگوی سفید غربی در دو سیستم وجود داشت (0/05>P). بیش ­ترین میزان افزایش وزن بدن، سرعت رشد (0/136 گرم در روز)، ضریب رشد ویژه (3 درصد در روز)، ضریب بقاء (90/48 درصد) و بازده غذایی در تیمار­های توده­ ساز به­ دست آمد (0/05>P). بیش ­ترین سودآوری در سیستم­ های توده ­ساز مشاهده شدکه با سیستم معمولی اختلاف معنی ­داری نشان داد (0/05>P). نتایج تحقیق بیانگر این است که با سیستم توده­ ساز زیستی می­ توان عملکرد تولید میگوی سفید غربی را در مرحله جوانی افزایش داد و حضور توده­ های زیستی سبب بهبود عملکرد اقتصادی میگوی سفید غربی در سیستم بدون تعویض آب می­ شود.

کلیدواژه‌ها


عنوان مقاله [English]

Economic and Production evaluation of Pacific white shrimp (Penaeus vannamei Boone, 1931) in conventional and biofloc aquaculture systems

نویسندگان [English]

  • Mohammad Hossein Khanjani 1
  • Mirmasoud Sajjadi 2
  • morteza alizadeah 3
  • Iman Sourinejad 4
1 Department of Fisheries Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran
2 Department of Fishery, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
3 Salty water aquatic research center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Bafgh,Iran
4 Fisheries Department, Faculty of Marine Science and Technology, Hormozgan University, Bandar Abbas, Iran
چکیده [English]

In the current study, economic performance and production of Pacific white shrimp (Penaeus vannamei) were studied in conventional and biofloc aquaculture systems. Shrimp juveniles with a weight of 2.56±0.33 g (M ± SD) were fed for 5 weeks in fiberglass tanks with 180 liters volume and density of 1gr shrimp per liter in four treatments including one control group with water exchange (100% artificial feed) and three biofloc treatments, 100%, 66.6% and 33.3% artificial feed (without water exchange). According to the results, considering the values of water quality parameters and production and economic performances of Penaeus vannamei, there were significant differences between two systems (P <0.05). The highest increase in body weight, growth rate (0.136 g per day), specific growth rate (3 %/day), survival rate (90.48%) and feed efficiency were obtained in biofloc treatments (P<0.05). The maximum level of profitability obtained in biofloc systems, that showed significant difference compared with conventional system (P<0.05). Results of this study highlights the production and economic performance of Penaeus vannamei in juvenile stage could be improved with biofloc system; and the presence of biofloc improves economic performance of Penaeus vannamei in zero water exchange system.

کلیدواژه‌ها [English]

  • Aquaculture
  • biofloc system
  • Pacific white shrimp
  1. Avnimelech, Y., 2009. Biofloc Technology: A Practical Guide Book. The World Aquaculture Society, Baton Rouge, Louisiana, USA. 182 p.
  2. Avnimelech, Y., 2012. Biofloc Technology: A Practical Guide Book, 2nd Edition. The World AquacultureSociety, Baton Rouge, Louisiana, United States. 272 p.
  3. Azim, M.E. and Little, D.C., 2008. The biofloc technology (BFT) in indoor tanks: water quality, Biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture. Vol. 283, pp: 29-35.
  4. Browdy, C.L.; Bratvold, D.; Stokes, A.D. and Mcintosh, R.P., 2001. Perspectives on the application of closed shrimp culture systems. In: The New Wave, Proceedings of the Special Session on Sustainable Shrimp Culture (ed. by E.D. Jory and C.L. Browdy), The World Aquaculture Society, Baton Rouge, LA, USA. pp: 20-34.
  5. Burford, M.A.; Thompson, P.J.; McIntosh, R.P.; Bauman, R.H. and Pearson, D.C., 2004. The contribution of flocculated material to shrimp (Penaeus vannamei) nutrition in a high intensity, zero-exchange system. Aquaculture. Vol. 232, pp: 525-537.
  6. Chu, C.P. and Lee D.J., 2004. Multiscale structures of biological flocs. Chemical Engineering Science. Vol. 59, pp: 1875-1883.
  7. Crab, R.; Defoirdt, T.; Bossier, P. and Verstraete, W., 2012. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture. Vol. 356-357, pp: 351-356.
  8. Cuzon, G.; Addison, L.; Gaxiola, G.; Rosas, C. and Guillaume, J., 2004. Nutrition of Penaeus vannamie reared in tank or in ponds. Aquaculture. Vol. 235, pp: 513-551.
  9. De Schryver, P. and Verstraete, W., 2009. Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors. Bioresource Technology.Vol. 100, pp:1162-1167.
  10. Emerenciano, M.; Ballester, E.L.C.; Cavalli, R.O. and Wasielesky, W., 2012. Biofloc technology application as a food source in a limited water exchange nursery system for Pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research. Vol. 43, pp: 447-457.
  11. Emerenciano, M.; Cuzon, G.; Goguenheim, G.J. and Gaxiola, G., 2013. Floc contribution on spawning performance of blue shrimp Penaeus stylirostris. Aquaculture Research. Vol. 44, pp: 75-85.
  12. Erondu, E.; Bekibele, D. and Gbulubo, A., 2006. Optimum crude protein requirement of Cat fish, Chrysichthys nigrodigitatus. Journal of Fisheries International. Vol. 1, pp: 40-43.
  13. Gao, L.; Shan, H.W.; Zhang, T.W.; Bao, W.Z. and Ma, S.J., 2012. Effects of carbohydrate addition on Penaeus vannamei intensive culture in a zero-water exchange system. Aquaculture. Vol. 342, pp: 89-96.
  14. Gaona, C.A.; Poersch, P.L.; Krummenauer, H.D.; Foes, G.K. and Wasielesky, W.Jr., 2011. The effect of solids removal on water quality, growth and survival of Penaeus vannamei in a biofloc technology culture system. International Journal of Recirculating Aquaculture. Vol. 12, pp: 54-73.
  15. Hanson, T.R.; Posadas, B.; Samocha, T.M.; Stokes, A.D.; Losordo, T. and Browdy, C.L., 2009. Economic factors critical to the profitability of super-intensive biofloc recirculating production systems for marine shrimp Penaeus vannamei. In The Rising Tide, Proceedings of the Special Session on Sustainable Shrimp Farming (Browdy, C.L. and Jory, D.E.,). pp: 268-83. World Aquaculture Society, Baton Rouge.
  16. Islam, M.S., 2008. From Pond to Plate: Towards a Twin Driven Commodity Chain in Bangladesh Shrimp Aquaculture. Food Policy. Vol. 33, pp: 209-223.
  17. Khanjani, M.H.; Sajjadi, M.M.; Alizadeh, M. and Sourinejad, I., 2017. Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research. Vol. 48, pp: 1491-1501.
  18. Khanjani, M.H.; Sajjadi, M.M.; Alizadeh, M. and Sourinejad, I., 2015. Effect of different feeding levels on water quality, growth performance and survival of Western white shrimp (Litopenaeus vannamei) post larvae with application of biofloc technology. Iranian Scientific Fisheries Journal. Vol. 24, pp: 13-28. (In Persian).
  19. Khanjani, M.H.; Sajjadi, M.M.; Alizadeh, M. and Sourinejad, I., 2016. Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iranian Journal of Fisheries Sciences. Vol. 15, pp: 1465-1484.
  20. Khanjani, M.H.; Sajjadi, M.M.; Alizadeh, M. and Sourinejad, I., 2016. Production and evaluation of biofloc for use in zero- water exchange rearing system, Journal of Aquaculture Development. Vol. 10, pp: 33-40. (In Persian).
  21. Krummenauer, D.; Samocha, T.; Poersch, L.; Lara, G. and Wasielesky, W.Jr., 2014. The reuse of water on the culture of pacific white shrimp, Penaeus vannamei, in BFT system. Journal of the World Aquaculture Society. Vol. 45, pp: 3-14.
  22. Kuhn, D.D.; Boardman, G.D.; Craig, S. R.; Flick, G.J. and McLean, E., 2008. Use of microbial flocs generated from tilapia effluent as a nutritional supplement for shrimp Penaeus vannamei in recirculating aquaculture systems. J of the World Aquaculture Society. Vol. 39, pp: 72-82.
  23. Maicá, P.F.; de Borba, M.R.; Martins, T.G. and Junior, W.W., 2014. Effect of salinity on performance and body composition of pacific white shrimp juveniles reared in a super-intensive system. Revista Brasileira de Zootecnia. Vol. 43, pp: 343-350.
  24. McAbee, B.J.; Bruce, J.W.; Weirich, C.R.; Stokes, A.D. and Browdy, C.L., 2003. Use of super-intensive greenhouse-enclosed raceway systems for the production of juvenile Penaeus vannamei. p. 169. In: Abstracts of Aquaculture America 2003. World Aquaculture Society, Baton Rouge, Louisiana, USA.
  25. Megahed, M.E., 2010.The effect of microbial Biofloc on water quality, survival and growth of the Green tiger shrimp (Penaeus Semisulcatus) fed with different crude protein levels. Journal of the Arabian Aquaculture Society. Vol.5, pp: 119-141.
  26. MOOPAM. 1999. Manual of oceanographic observations and pollutants analysis methods (Third Edition). The Regional Organization for the Protection of the Marine Environment (ROPME), Kuwait.
  27. Moss, S.M. and Leung, P.S., 2006. Comparative cost of shrimp production: earthen ponds versus recirculating aquaculture systems. In Shrimp Culture: Economics, Marketing and Trade(Ed. by Leung, P.S. and Engle, C.R.,). pp: 291-300. Blackwell Publishing, Ames.
  28. Neiland, A.E.; Soley, N.; Varley, J.B. and Whitmarsh, D.J., 2001. Shrimp Aquaculture: Economic Perspectives for Policy Development. Marine Policy. Vol. 25, pp: 265-279.
  29. Ray, J.A.; Lewis, B.L.; Browdy, C.L. and Loffler, J.W., 2010. Suspended solids removal to improve shrimp (Penaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, super intensive culture systems. Aquaculture. Vol. 299, pp: 89-98.
  30. Sa, D.T.; Sousa, R.R.De.; Rocha, I.R.C.B.; Lima, G.C.De. and Costa, F.H.F., 2013. Brackish shrimp farming in northeastern Brazil: the environmental and socio-economic impacts and sustainability, Natural Resources. Vol. 4, pp: 538-550.
  31. Tacon, A.G.J.; Cody, J.J.; Conquest, L.D.; Divakaran, S.; Forster, I.P. and Decamp, O.E., 2002. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Penaeus vannamei (Boone) fed different diets. Aquaculture Nutrition. Vol. 8, pp: 121-139.
  32. Wasielesky, W.; Atwood, H.; Stokes, A.; Browdy, C.L., 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Penaeus vannamei. Aquaculture. Vol. 258, pp: 396-403.
  33. Xu, W.J. and Pan, L.Q., 2012. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Penaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture. Vol. 356, pp: 147-152.