تعیین ترکیب شیمیایی، فراسنجه های تولید گاز و قابلیت هضم انواع گیاهان خودرو در شرایط آزمایشگاهی

نوع مقاله: تغذیه

نویسندگان

گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران

10.22034/aej.2020.110281

چکیده

این پژوهش به ­منظور تعیین ترکیب شیمیایی، فراسنجه‌ های تولید گاز و قابلیت هضم برون­تنی گیاهان خودروی قیاق (Echinochola crus-gali)، تاج خروس (Portulaca oleracea)، سلمه (Sorghum halepense)، سوروف (Amaranthus retroflexus)، پنجه مرغی (Chenopodium album) و خرفه (Cynodon dactylon) در قالب طرح کاملاً تصادفی انجام شد. گیاهان مورد مطالعه در مرحله­­ بلوغ از منطقه گنبد کاووس ­جمع­ آوری­ شدند. نتایج نشان داد که در بین گونه ­های مختلف، از نظر ترکیب شیمیایی اختلاف وجود دارد (0/05>P). گیاه خرفه از نظر مقدار خاکستر (26/54 درصد) و پروتئین خام (18/91 درصد) بالاترین و از نظر الیاف نامحلول در شوینده خنثی (18 درصد) پایین ­ترین مقدار را داشت. بالاترین مقدار الیاف نامحلول در شوینده خنثی (66 درصد) و فنل کل (15/5 درصد) و پایین ­ترین مقدار خاکستر (9/75 درصد) مربوط به قیاق بود. بین تیمار­های آزمایشی از نظر پتانسیل و ثابت نرخ تولید گاز اختلاف معنی­داری وجود داشت (0/05>P)؛ به ­طوری ­که خرفه و سلمه به ­ترتیب پایین ­ترین و بالاترین پتانسیل تولید گاز را دارا بودند (131/7 و 255/7 میلی­ لیتر در گرم ماده خشک). بالاترین و پایین ­ترین غلظت اسیدهای چرب کوتاه زنجیر به ­ترتیب مربوط به گیاهان خود­روی سوروف و سلمه بود (0/171 و 0/413 میلی ­مول به ازاء گرم ماده خشک). بالاترین و پایین ­ترین میزان قابلیت هضم ماده خشک و ماده آلی، تولید توده پروتئین میکروبی و بازده تولید پروتئین میکروبی به ­ترتیب مربوط به خرفه و قیاق بود. نتایج نشان داد که علف­ های خودروی مورد مطالعه در این آزمایش، از پتانسیل غذایی متفاوت برخوردار بودند، ولی در عین حال، این گیاهان قابلیت استفاده در تغذیه دام را دارا می‌ باشند.

کلیدواژه‌ها


  1. ارزانی،ح.،1387. مطالعه کیفیت علوفه. گزارش طرح پژوهشی تعیین سیاست­ های اقتصادی واحدهای اجتماعی پایه مرتعداری. دانشکده منابع طبیعی، دانشگاه تهران. 78 صفحه.
  2. تربتی ­نژاد، ن.م.؛ چایی­چی، م.د. و شریفی، س.، 1380. بررسی اثر کود نیتروژن بر کیفیت سیلوی سه رقم سورگوم علوفه­ ای. علوم و صنایع کشاورزی. دوره 9، شماره 2، صفحات 205 تا 220.
  3. Abd El-Aziz, H.A.; Sobhy, M.H.; Ahmed, K.A.; Abd El hameed, A.K.; Rahman, Z.A. and Hassan, W.A., 2014. Chemical and remedial effects of purslane (Portulaca oleracea) plant. Journal of Life Science. Vol. 11, pp: 31-42.
  4. Almasoud, A.G. and Salem, E., 2014. Nutritional Quality of Purslane and its crackers. Middle East Journal of Applied Sciences. Vol. 4 No. 3, pp: 448-454.
  5. AOAC. 1990. Official Methods of Analysis 15th edn. Association of Official Analytical Chemists Washington DC. USA.
  6. Beuvink, J.M.W. and Spoelstra, S.F., 1992. Interactions between substrate fermentation end-products buffering systems and gas production upon fermentation of different carbohydrates by mixed rumen microorganisms in vitro. Appl Microbiol Biotechnol. Vol. 37, pp: 505-509.
  7. Blackshaw, R.E., 2005. Nitrogen fertilizer manure and compost effects on weed growth and competition with spring wheat. Agronomy Journal. Vol. 97, pp: 1612-1621.
  8. Blummel, M. and Bullerdieck, P., 1997. The need to complement gas production measurements with residue determination from in Sacco degradability to improve the prediction of voluntary intake of hays. Animal Science. Vol.  64, pp: 71-75.
  9. Blummel, M. and Orscov, E.R., 1993. Comparsion of in vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Animal Feed Science and Technology. Vol. 40, pp: 109-119.
  10. Burt, S., 2004. Essential oils their antibacterial properties and potential applications in foods a review. International Journal of Food Microbiology. Vol.  94, pp: 223-253.
  11. Castelán, O.J.; Estrada, L.; Carretero, A.; Vieira, N.; Martinez, S. and Cárdenas, C., 2003. Degradation characteristics of maize weeds used as forage in smallholder maize-livestock production systems of central México in different growing periods. Tropical and Subtropical Agroecosystems. Vol. 3 pp: 115-119.
  12. Di-Tomasa, J.M., 1995. Approach for improvement crop competition through the manipulation of fertilization strategies. Weed Science. Vol. 43, pp: 491-497.
  13. Faller, A.L.K. and Fialho, E., 2009. The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic coking. Food Research International. Vol. 42, pp: 210-215.
  14. Getachew, G.; Makkar, H.P.S. and Becker, K., 2002. Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. The Journal of Agricultural Science. Camb. Vol. 139, pp: 341-352.
  15. Hosseini-Nezhad, Z.; Yousef-Elahi, M. and Fazaeli, H., 2012. Determination of nutritive value of five halophyte in salt desert lands of Khorasan province. Journal of Pajouhesh and Sazandegi. Vol. 55, pp: 2-5.
  16. Karabulut, A.; Ozgur Ozkan, C.; Kamalak, A. and Canbolat, O., 2006. Comparison of the nutritive value of a native Turkish forages tumbleweed hay (Gundelia tournefortii L) wheat straw and alfalfa hay using in situ and in vitro measurements with sheep. Archives latinoamericanos de producción animal. Vol. 14, No. 3, pp: 78-83.
  17. Larbi, A.; Smith, J. W.; Kurdi, I.O.; Adeknle, I.O.; Rajj, A.M. and Ladipo, D.O., 1998. Chemical composition rumen degradation and gas production characteristics of some multipurpose fodder trees and shrubs during wet and dry seasons in the humid tropics. Animal Feed Science and Technology. Vol. 72, pp: 81-96.
  18. Lim, Y.Y. and Quah, E.P.L., 2007. Antioxidant properties of different cultivars of Portula caoleracea. Food Chemistry. Vol. 103, pp: 734-740. 
  19. Makkar, H.P.S., 2004. Recent advances in the in vitro gas method for evaluation of nutriational quality of feed resources Food and Agriculture Organization of the United Nations Rome Italy. Vol. 33, pp: 170-184.
  20. Makkar, H.P.S., 2005. In vitro gas methods for evaluation of feeds containing phytochemicals. Animal Feed Science and Technology. Vol. 123, No. 1, pp: 291-302.
  21. Makkar, H.P.S.; Blümmel, M. and Becker, K., 1995. Formation of complexes between polyvinyl pyrrolidone and polyethylene glycol with tannins and their implications in gas production and true digestibility in in vitro techniques. Vol. 73, pp: 897-913.
  22. Malick, C.P. and Singh, M.B., 1980. In plant enzymology and histo enzymologhy Kalyani Publishers New Dehli 1980. 286 p.
  23. Manzoor, M.N.; Sultan, J.I.; Nisa, M.U. and Bilal, M.Q., 2013. Nutritive evaluation and in situ digestibility of irrigated grasses. The Journal of Animal and Plant Sciences. Vol. 23, No. 5, pp: 1223-1227.
  24. Mcsweeny, C.S.; Palmer, B.; McNeill, D.M. and Krause, D.O., 2001. Microbial interaction with tannin nutritional consequences for ruminants. Animal Feed Science and Technology. Vol. 91, pp: 83-93.
  25. Menke, K.H. and Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Journal of Animal Research Develop. 28 p.
  26. Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D. and Schneider, W., 1979. The estimation of the digestibility and metabolisable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor. The Journal of Agricultural Science. Vol. 93, pp: 217-222.
  27. Minson, D.J., 1990. Forage in ruminnt nutrition Academic Press Inc San Diego CA USA.
  28. Norman, H.C.; Friend, C.; Masters, D.G.; Rintoul, A.J.; Dynes, R.A. and Williams, I.H., 2004. Variation within and between two saltbush species in plant composition and subsequent selection by sheep. Australian Journal of Agriculture Research. Vol. 55, pp: 999-1007.
  29. Norton, B.W., 2003. The Nutritive value of tree legumes. http://www.fao.org/ag/AGPC/doc/ Publicat/Gutt-shel/x5556 e0j.htm. pp: 1-10.
  30. Oliveira, I.; Valentão, P.; Lopes, R.; Andrade, P.; Bento, A. and Pereira, J.A., 2009. Phytochemical characterization and radical scavenging activity of Portulaca oleraceae L leaves and stems. Microchemical Journal. Vol. 92, pp: 129-134.
  31. Olivera, M.P., 1998. Use of in vitro gas production technique to assess the contribution of both soluble and insoluble fraction on the nutritive value of forage A thesis submitted to the Univercity of Aberdeen Scotland in partial fulfillment of the degree of Master of Science in Animal Nutrition.
  32. Ørskov, E.R. and McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation Measurements weighted according to rate of passage. Journal of Agriculture Science. Vol. 92, pp: 499-503.
  33. SAS. 2003. SAS users Guide Statistic Cray NC SAS Institute INC.
  34. Saunders, R.M. and Becker, R., 1984. Amaranthus A potential food and feed resource In Adv Cereal sci. Tech. Vol. 6, pp: 357-396.
  35. Singh, H.P.; Batish, D.R. and Kohli, R.K., 2003. Allelopathic interactions and allelochemicals new possibilities for sustainable weed management Critical Reviews in Plant Sciences. Vol. 22, No. 3 and 4, pp: 239-311.
  36. Sommart, K.; Parker, D.S.; Rowlinson, P. and Wanapat, M., 2000. Fermentation characteristics and microbial protein synthesis in an in vitro system using cassava rice straw and dried ruzi grass as substrates. Asian-Aust Journal Animal Science. Vol. 13, pp: 1084-1093.
  37. Thayumanavan, B. and Sadasivam, S., 1984. Physicochemical basis for the preferential uses of certain rice varieties. Qualities Plant Foods for Human Nutrition. Vol. 34, 253 p.
  38. Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B. and France, J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology. Vol. 48, pp: 185-197.
  39. Van Soest, P.J.; Robertson, J.B. and Lewis, B.A., 1991. Methods for dietary fiber neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science. Vol. 74, pp: 3583-3597.
  40. Weber, L.; Ehubbard Putnam, D.; Nelson, L. and Lehman, J., 1988. Amaranth grain Production guide Rodale Pres Inc Emmaus. PH and American Amaranth Institute, Bricelyn, M. N. In vitro gas production using rumen fluid. Animal research and development. Vol. 28 pp: 7-55.