تجزیه و تحلیل بیزین پارامترهای ژنتیکی برای صفات ایمنی همورال و باقی مانده مصرف خوراک در بلدرچین ژاپنی

نوع مقاله : ژنتیک

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 دانشکده کشاورزی و صنایع غذایی، دانشگاه کوئینزلند، بریزبین، استرالیا

چکیده

هدف از این مطالعه برآورد پارامترهای ژنتیکی صفات ایمنی هومورال (تیتر آنتی‌ بادی علیه سلول ‌های قرمز خونی گوسفندی (SRBC) و ویروس بیماری نیوکاسل (NDV)) و باقی ­مانده مصرف خوراک از 20 تا 45 روزگی در بلدرچین ژاپنی بود. بدین منظور از تعداد 2492 رکورد صفت باقی ­مانده مصرف خوراک و 5238 رکورد مربوط به صفات ایمنی استفاده شد. پارامترهای ژنتیکی صفات با استفاده از تجزیه و تحلیل تک و دو صفتی از طریق نمونه ‌گیری گیبس برآورد شد. وراثت­ پذیری های برآورد شده برای تیتر آنتی ‌بادی کل (AbT)، تیتر (IgY) ایمونوگلوبولین Y، تیتر (IgMایمونوگولوبولین M و تیتر (IgF) ایمونوگولوبولین F برعلیه SRBC به ­ترتیب برابر 0/08، 0/14، 0/02 و 0/24 اما وراثت­ پذیری تیتر آنتی ‌بادی برعلیه (NDV (AbNDV پایین ­تر از برآوردهای آنتی ­ژن (0/05=SRBC  (hبود. وراثت­ پذیری باقی ­مانده مصرف خوراک در سنین مختلف در دامنه 0/04 تا 0/07 به ­دست آمد. همبستگی ژنتیکی بین تیتر آنتی‌ بادی کل و IgY مثبت و بالا (0/92) بود. همبستگی ژنتیکی بین RFI با IgM منفی و با سایر ایمونوگولوبولین ‌ها (IgY, AbT, IgF) و NDV مثبت بود. از این مطالعه نتیجه­ گیری می­ شود که انتخاب برای IgF با وراثت ­پذیری 0/24 به ­دلیل داشتن همبستگی ژنتیکی منفی (0/23-) با باقی­ مانده مصرف خوراک موجب بهبود این صفت و کاهش هزینه‌ ها، عمدتاً مرتبط با بحث خوراک و انتخاب از روی فنوتیپ حیوانات، می ‌شود. از طرفی به ­دلیل همبستگی مثبت، متوسط و بالای آن با سایر ایمونوگلوبولین‌ ها (0/80-0/34) انتخاب آن منجر به کاهش پاسخ­ های ایمنی هومورال در بلدرچین نمی ‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Bayesian analysis of genetic parameters for humoral immune responses and residual feed intake traits in Japanese quail

نویسندگان [English]

  • Mojdeh Mahmoudi Zarandi 1
  • Mohammad Rokouei 1
  • Mehdi Vafaei Valleh 1
  • Ali Maghsoudi 1
  • Nicholas Hudson 2
1 Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Iran
2 School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
چکیده [English]

The aim of this study was to estimate genetic parameters of humoral immune responses (antibody titers against sheep red blood cells (SRBC) and Newcastle Disease Virus (NDV)) and residual feed intake from 20 to 45 days of age in Japanese quail. For this purpose, a total of 2492 records of residual feed intake traits and 5238 records of immune traits were used. The analyses of Genetic parameters of traits were estimated through single and bivariate animal models via Gibbs sampling method. Heritability estimates of total antibody titer (AbT), titer of immunoglobulin Y (IgY), titer of immunoglobulin M (IgM) and titer of immunoglobulin F (IgF) against SRBC were 0.08, 0.14, 0.02 and 0.24, respectively, however, heritability of antibody titer against NDV was lower than estimated of SRBC antigen (h2= 0.05). heritability of RFI in different ages were in ranges of 0.04 to 0.07. genetic correlations estimate between total antibody and IgY were positive and high and was 0.92. The negative genetic correlations were related to IgM with RFI and genetic correlations estimates between RFI and other immunoglobulins (IgY, AbT, IgF) and NDV were positive. As a conclusion, selection for IgF due to its heritability (0.24) and negative genetic correlation (-0.23) with RFI, cause improve in RFI and reduce costs, related mainly to feeding and selecting of animals with phenotyping. On the other hand, due to moderate to high positive genetic correlations (0.34-0.80) were found between IgF and other immunoglobulins, selection of it didn’t lead to decline of humoral immune responses in quail.

کلیدواژه‌ها [English]

  • Humoral Immune
  • Residual Feed Intake
  • Antibody Titer
  • Heritability
  • Genetic correlation
  • SRBC
  1. Aggrey, S.; Karnuah, A.B.; Sebastian, B. and Anthony, N.B., 2010. Genetic properties of feed efficiency parameters in meat type chickens. Genet. Select. Evol. Vol. 42, p: 25.
  2. Balthazart, J.; Baillien, M.; Charlier, T.D.; Cornil, C.A. and Ball, G.F., 2003. The neuroendocrinology of reproductive behavior in Japanese quail. Domest. Anim. Endocrinol. Vol. 25, pp: 69-82.
  3. Bao, M.; Bovenhuis, H.; Nieuwland, M.G.; Parmentier, H.K. and Van der Poel, J.J., 2016. Genetic parameters of IgM and IgG antibodies binding autoantigens in healthy chickens. Poult. Sci. Vol. 95, pp: 458-465.
  4. Beilharz, R.G.; Luxford, B.G. and Wilkinson, J.L., 1993. Quantitative genetics and evolution: Is our understanding of genetics sufficient to explain evolution? Journal of Anim. Breed. Genet. Vol. 110, pp: 161-170.
  5. Berghof, T.V.L.; Van der Klein, S.A.S.; Arts, J.A.J.; Parmentier, H.K.; Van der Poel, J.J. and Bovenhuis, H., 2015. Genetic and Non-Genetic Inheritance of Natural Antibodies Binding Keyhole Limpet Hemocyanin in a Purebred Layer Chicken Line. PLoS One. Vol. 10, No. 6.
  6. Bovenhuis, H.; Bralten, H.; Nieuwland, M.G. and Parmentier, H.K., 2002. Genetic parameters for antibody response of chickens to sheep red blood cells based on a selection experiment. Poult. Sci. Vol. 81, pp: 309-315.
  7. Cain, J.R. and Cawley, W.O., 1972. Care management propagation: japanese quail (coturnix). Texas Agricultural Experiment Station. http://hdl .handle .net /1969 .1 /92988.
  8. Cunningham, C.H., 1971. Virologia Practica. 6th Ed. 260 p.
  9. Demas, G.E.; Adamo, S.A. and French, S.S., 2011. Neuroendocrine-immune crosstalk in vertebrates and invertebrates: implications for host defense. Funct. Ecol. Vol. 25, pp: 29-39.
  10. Dunnington, E.A., 1990. Selection and homeostasis. Proceedings of the 4th World Congress on genetics applied to livestock production. Edinburgh, Scotland, UK. pp: 5-12.
  11. Dunnington, E.A.; Larsen, C.T.; Gross, W.B. and Siegel, P.B., 1992. Antibody responses to combinations of antigens in white leghorn chickens of different background genomes and major histocompatibility complex genotypes. Poult. Sci. Vol. 71, pp: 1801-1806.
  12. Jones, R.B.; Mills, A.D. and Faure, J.M., 1991. Genetic and experiential manipulation of fear-related behavior in Japanese quail chicks (Coturnix coturnix japonica). J. Comp. Psychol. Vol. 105, pp: 15-24.
  13. Kayang, B.B.; Vignal, A.; Inoue-Murayama, M.; Miwa, M.; Monvoisin, J.L.; Ito, S. and Minvielle, F., 2004. A first generation micro satellite linkage map of the Japanese quail. Anim. Genet. Vol. 35, pp: 195-200.
  14. Leitner, G.; Uni, Z.; Cahaner, A.; Gutman, M. and Dan Heller, E., 1992. Replicated Divergent Selection of Broiler Chickens for High or Low Early Antibody Response to Escherichia coli Vaccination. Poult. Sci. Vol. 71, pp: 27-37.
  15. Liu, T.; Qu, H.; Luo, C.; Li, X.; Shu, D.; Sandø Lund, M. and Su, G., 2014. Genomic Selection for the Improvement of Antibody Response to Newcastle Disease and Avian Influenza Virus in Chickens. PLoS One. Vol. 9, No. 11, p: e112685.
  16. Lotfi, E.; Zerehdaran, S. and Raoufi, Z., 2011. Genetic properties of egg quality traits and their correlations with performance traits in Japanese quail. Brit. Poultry. Sci. Vol. 53, pp: 585-591.
  17. Luiting, P. and Urff, E.M., 1991. Optimization of a model to estimate residual feed consumption in the laying hen. Livest. Prod. Sci. Vol. 27, pp: 321-338.
  18. Lwelamira, J., 2012. Phenotypic and genetic parameters for body weights and antibody response against Newcastle disease virus (NDV) vaccine for Kuchi chicken ecotype of Tanzania under extensive management. Trop. Anim. Health. Prod. Vol. 44, pp: 1529-1534.
  19. Lwelamira, J.; Kifaro, G.C. and Gwakisa, P.S., 2009. Genetic parameters for body weights, egg traits and antibody response against Newcastle disease virus (NDV) vaccine among two Tanzania chicken ecotypes. Trop. Anim. Health. Prod. Vol. 41, pp: 51-59.
  20. Mills, A.D. and Faure, J.M., 1991. Divergent selection for duration of tonic immobility and social reinstatement behavior in Japanese quail (Coturnix coturnix japonica) chicks. J. Comp. Psychol. Vol.  105, pp: 25-38.
  21. Misztal, I.; Tsuruta, S.; Strabel, T.; Auvray, B.; Druet, T. and Lee, D.H., 2002. BLUPF90 and related programs (BGF90). 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France. CD-ROM. Communication number. pp: 28-70.
  22. Mohammadabadi, M.R.; Nikbakhti, M.; Mirzaee, H.R.; Shandi, A.; Saghi, D.A.; Romanov, M.N. and Moiseyeva, I.G., 2010. Genetic variability in three native Iranian chicken populations of the Khorasan province based on microsatellite markers. Russ. J. Genet. Vol. 46, No. 4, pp: 505-509.
  23. Mohammadi-Tighsiah, A.; Maghsoudi, A.; Bagherzadeh Kasmani, F.; Rokouei, M. and Faraji-Arough, H., 2018. Bayesian analysis of genetic parameters for early growth traits and humoral immune responses in Japanese quail. Journal of Livest. Sci. Vol. 216, pp: 197-202.
  24. Møller, A.P.; Christe, P.; Erritzøe, J. and Mavarez, J., 1998. Condition, disease and immune defence. Oikos. Vol. 83, pp: 301-306.
  25. Moradian, H.; Esmailizadeh, A.K.; Sohrabi, S.; Nasirifar, E.; Askari, N.; Mohammadabadi, M.R. and Baghizadeh, A., 2014. Genetic analysis of an F2 intercross between two strains of Japanese quail provided evidence for quantitative trait loci affecting carcass composition and internal organs. Mol. Biol. Rep. Vol. 41, No. 7, pp: 4455-4462.
  26. Narinc, D.; Aksoy, T.; Karaman, E.; Aygun, A.; Firat, M.Z. and Uslu, M.K., 2013. Japanese quail meat quality: characteristics, heritabilities, and genetic correlations with some slaughter traits. Poult. Sci. Vol. 92, pp: 1735-1744.
  27. Ori, R.J.; Esmailizadeh, A.K.; Charati, H.; Mohammadabadi, M.R. and Sohrabi, S.S., 2014. Identification of QTL for live weight and growth rate using DNA markers on chromosome 3 in an F2 population of Japanese quail. Mol. Biol. Rep. Vol. 41, No. 2, pp: 1049-1057.
  28. Pinard, M.H.; Janss, L.L.G.; Maatman, R.; Noordhuizen, J.P.T.M. and van der Zijpp, A.J., 1993. Effect of divergent selection for immune responsiveness and of major histocompatibility complex on resistance to Mareks disease in chickens. Poult. Sci. Vol. 72, pp: 391-402.
  29. Pinard, M.H.; Van Arendonk, J.A.; Nieuwland, M.G. and Van Der Zijpp, A.J., 1992. Divergent selection for immune responsiveness in chickens: estimation of realized heritability with an animal model. Journal of Anim. Sci. Vol. 70, pp: 2986-2993.
  30. Sacco, R.E.; Nestor, K.E.; Saif, Y.M.; Tsai, H.J. and Patterson, R.A., 1994. Effect of genetic selection for increased body weight and sex of poult on antibody response of turkeys to Newcastle disease virus and Pasteurella multocida vaccines. Avian. Dis. Vol. 38, pp: 33-36.
  31. Siegel, P.B. and Honaker, C.F., 2009. Impact of genetic selection for growth and immunity on resource allocations. Journal of Appl. Poult. Res. Vol. 18, pp: 125-130.
  32. Silva, L.P.; Ribeiro, J.C.; Crispim, A.C.; Felipe, G.; Silva, A.; Bonafe, C.M.; Silva, F.F. and Torres, R.A., 2013. Genetic parameters of body weight and egg traits in meat type quail. Journal of Livest. Sci. Vol. 153, pp: 27-32.
  33. Sohrabi, S.S.; Esmailizadeh, A.K.; Baghizadeh, A.; Moradian, H.; Mohammadabadi, M.R.; Askari, N. and Nasirifar, E., 2012. Quantitative trait loci underlying hatching weight and growth traits in an F2 intercross between two strains of Japanese quail. Anim. Prod. Sci. Vol. 52, No. 11, pp: 1012-1018.
  34. Sun, Y.; Biscarini, F.; Bovenhuis, H.; Parmentier, H.K. and van der Poel, J.J., 2013a. Genetic parameters and across-line SNP associations differ for natural antibody isotypes IgM and IgG in laying hens. Anim. Genet. Vol. 44, pp: 413-424.
  35. Sun, Y.; Ellen, E.D.; Parmentier, H.K. and Van der Poel, J.J., 2013b. Genetic parameters of natural antibody isotypes and survival analysis in beak-trimmed and non-beak-trimmed crossbred laying hens. Poult. Sci. Vol. 92, pp: 2024-2033.
  36. Van Der Zijpp, A.J. and Leenstra, F.R., 1980. Genetic analysis of the humoral immune response of White Leghorn chicks. Poult. Sci. Vol. 59, pp: 1363-1369.
  37. Van Eerden, E., 2007. Residual feed intake in young chickens: Effects on energy partitioning and immunity. PhD Thesis, Wageningen University, The Netherlands. 168 P.
  38. Wegmann, T.G. and Smithies, O., 1966. A Simple Hemagglutination System Requiring Small Amounts of Red Cells and Antibodies. Transfusion. Vol. 6, pp: 67-73.
  39. West, B. and Zhou, B.X., 1989. Did chicken go north? New evidence for domestication. Worlds Poult. Sci. J. Vol. 45, pp: 205-218.
  40. Wijga, S.; Parmentier, H.K.; Nieuwland, M.G. and Bovenhuis, H., 2009. Genetic parameters for levels of natural antibodies in chicken lines divergently selected for specific antibody response. Poult. Sci. Vol. 88, pp: 1805-1810.
  41. Yalcin, S.; Oguz, I. and Otles, S., 1995. Carcass characteristics of quail (Coturnix coturnix japonica) slaughtered at different ages. Brit. Poultry. Sci. Vol. 36, pp: 393-399.
  42. Zerehdaran, S.; Lotfi, E. and Rasouli, Z., 2012. Genetic evaluation of meat quality traits and their correlation with growth and carcase composition in Japanese quail. Brit. Poultry. Sci. Vol. 53, pp: 756-762.
  43. Zhao, X.L.; Honaker, C.F. and Siegel, P.B., 2012. Phenotypic responses of chickens to long-term selection for high or low antibody titers to sheep red blood cells. Poult. Sci. Vol. 91, pp: 1047-1056.