اثرات پربیوتیک دیواره سلولی مخمر (ایمنووال) بر پارامترهای رشد و خون ‌شناسی تاس ماهی ایرانی (Acipenser persicus) جوان

نوع مقاله : تغذیه

نویسندگان

1 گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه ‌سرا، ایران

2 موسسه تحقیقات بین المللی تاس ماهیان دریای خزر، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران

3 گروه شیلات، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

در این مطالعه اثرات مکمل پربیوتیک ایمنووال بر عملکرد رشد و برخی پارامتر‌های خون ‌شناسی تاس ­ماهی ایرانی (Acipenser persicus) بررسی گردید. بدین ­منظور، تاس ­ماهیان ایرانی جوان با میانگین وزن اولیه 0/39±47/78 در 9 مخزن (500 لیتری) در سه تیمار به همراه سه تکرار به ­طور تصادفی توزیع و با جیره پایه حاوی دو سطح از مکمل پربیوتیک ایمنووال شامل 0/5 و 1 درصد و جیره فاقد مکمل پربیوتیک (تیمار شاهد) طی هشت هفته تغذیه شدند. پس از پایان دوره تغذیه، اختلاف معنی ­داری در شاخص ­های رشد و تغذیه ماهیان مشاهده نگردید (0/05<p ). بررسی پارامتر­‌های خون ‌شناسی نشان داد که تعداد یاخته‌­ های قرمز(RBC) و هموگلوبین در ماهیان تغذیه شده با جیره حاوی 1 درصد مکمل پربیوتیک به ­طور معنی ‌­داری بالاتر از تیمار شاهد بود (0/05>p ). تفاوت معنی­‌ داری بین پارامتر­‌های حجم متوسط یاخته قرمز (MCV)، میانگین هموگلوبین در سلول (MCH) و میانگین غلظت هموگلوبین در سلول (MCHC)، یاخته سفید خون، نوتروفیل، لنفوسیت و مونوسیت ‌­ها مشاهده نشد (0/05<p ). این مطالعه نشان داد که مصرف مکمل پربیوتیک ایمنووال در دو سطح 0/5 و 1 درصد اثر معنی ‌داری بر پارامتر­‌های رشد و کارایی ندارد. هم­ چنین استفاده از 1 درصد جیره حاوی مکمل پربیوتیک ایمنووال می ­‌تواند سبب تغییر معنی ‌دار در برخی از پارامتر‌های خون ­‌شناسی تاس ­ماهیان ایرانی جوان شود. به­ منظور تأیید تأثیر مثبت پربیوتیک نیاز است که شاخص ­های بیوشیمیایی، پاسخ ­های ایمنی و هم ­چنین میزان زنده­ مانی ماهی در مواجهه با میکروب­ های بیماری ­زا مورد بررسی قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of yeast cell membrane prebiotic (immunowall®) on growth performance and hematological parameters in juvenile Persian sturgeon (Acipenser persicus)

نویسندگان [English]

  • Soheil Yousefi 1
  • Maryam Monsef Shokri 2
  • Hamid allaf navirian 1
  • Seyed Hossein Hoseinifar 3
1 Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh sara, Iran
2 International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
3 Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

In this study, the effects of the prebiotic supplement, Immunowall® was evaluated on growth performance and hematological parameters of Persian sturgeon (Acipenser persicus). For this purpose, juvenile Persian sturgeon with an average initial weight 47.78±0.39 were randomly distributed into nine tanks (500 l) with triplicate treatments were fed by basal diets
containing 0.5%, 1% prebiotic supplement and a diet without prebiotic supplement as control (0%) during 8 weeks. After the end of experiments, no significant difference was observed in growth and feed utilization parameters in fish which fed by experimental diets comparison to control diet (P>0.05). Assessment of hematological parameters showed that red blood cell and hemoglobin were significantly higher in the fish fed diet containing 1% compared to control (p < 0.05). Also, no significant differences different were observed between other parameters including white blood cell, mean cell volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, white blood cell, neutrophil, lymphocyte and monocyte (P>0.05). This study revealed that administration of 0.5 and 1% Immunowall does not have a significant effect on growth parameters and food performance. Also, using a diet containing 1% Immunowall can significantly change some of the hematological parameters of Persian sturgeon. For confirmation of the positive effect of prebiotic, it is needed to study biochemical parameters, immune response and fish survival rate after pathogenic bacterial challenge.

کلیدواژه‌ها [English]

  • Immunowall
  • Growth parameters
  • Hematological parameters
  • Persian sturgeon
  • Prebiotic supplement
  1. Adel, M.; Nayak, S.; Lazado, C.C. and Yeganeh, S., 2016. Effects of dietary prebiotic GroBiotic® A on growth performance, plasma thyroid hormones and mucosal immunity of great sturgeon, Huso huso (Linnaeus, 1758). Journal of Applied Ichthyology. Vol. 32, No, 5, pp: 825-831.
  2. Adeli, A. and Namdar, M., 2015. The Iranian caviar and its substitutes in the world market. Ecopersia. Vol. 3, No. 1, pp: 933-944.
  3. Ai, Q.; Mai, K.; Tan, B.; Xu, W.; Duan, Q.; Ma, H. and Zhang, L., 2006. Replacement of fish meal by meat and bone meal in diets for large Yellow croaker (Pseudosciaena crocea). Aquaculture. Vol. 260, pp: 255-263.
  4. Akbary, P. and Jahanbakhshi, A., 2018. Growth yield, survival, carcass quality, haematological, biochemical parameters and innate immune responses in the grey mullet (Mugil cephalus Linneaus, 1758) fingerling induced by Immunogen® prebiotic. Journal of Applied Animal Research, Vol. 46, No. 1, pp: 10-16.
  5. Akter, M.N.; Sutriana A.; Talpur, A.D. and Hashim, R., 2016. Dietary supplementation with mannan oligosaccharide influences growth, digestive enzymes, gut morphology, and microbiota in juvenile striped catfish, (Pangasianodon hypophthalmus). Aquaculture International. Vol. 24, pp: 127-144.
  6. Ali, S.R.; Ambasankar, K.; Praveena, E.; Nandakumar, S. and Syamadayal, J., 2017. Effect of dietary mannan oligosaccharide on growth, body composition, haematology and biochemical parameters of Asian seabass. Aquaculture Research. Vol. 48, No. 3, pp: 899-908.
  7. Amirkolaie, A.K. and Rostami, B., 2015. Effects of Dietary Supplementation with Immunogen® on the Growth, Hematology and Gut Microbiota of Fingerling Common Carp (Cyprinus carpio, Linnaeus). Fisheries and Aquatic Sciences. Vol. 18, pp: 379-385.
  8. Andrews, S.R.; Sahu, N.P.; Pal, A.K. and Kumar, S., 2009. Hematological modulation and growth of Labeo rohita fingerlings: effect of dietary mannan oligosaccharide, yeast extract, protein hydrolysate and chlorella. Aquaculture Research. Vol. 41, pp: 61-69.
  9. Angulo, F., 2000. Antimicrobial agents in aquiculture: potential impact in public health. Enfermedades Infecciosas y Microbiología. Vol. 20, No. 6, pp: 217-219.
  10. AOAC (Association of Official Analytical Chemists). 2012. Official Methods of Analysis of the Association of Official Analytical Chemists. Edited by GW Latimer Jr. 19th Ed. Association of Official Analytical Chemists, Arlington, VA, USA, 1263 P.
  11. Aramli, M.S.; Kamangar, B. and Nazari, R.M., 2015. Effects of dietary β-glucan on the growth and innate immune response of juvenile Persian sturgeon, Acipenser persicus. Fish and Shellfish Immunology. Vol. 47, No. 1, pp: 606-610.
  12. Blaxhall, P.C. and Daisley, K.W., 1973. Routine haematological methods for use with fish blood. Journal of Fish Biology. Vol. 5, pp: 771-781.
  13. Bledsoe, G.E.; Bledsoe, C.D. and Rasco, B., 2003. Caviars and fish roe products. Critical Reviews in Food Science Nutrition. Vol. 43, pp: 317-356.
  14. Castro, R. and Tafalla, C., 2015. Overview of fish immunity. Edited by Beck, B.H. and Peatman, E., 1st Ed. Mucosal Health in Aquaculture, Academic Press, USA. pp: 3-55.
  15. Dalmo, R.A. and Bøgwald, J., 2008. β-Glucans as conductors of immune symphonies. Fish and Shellfish Immunology. Vol. 25, No. 4, pp: 384-396.
  16. Dawood, M.A.O.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; El Basuini, M.F.; Hossain, M.S.; Nhu, T.H.; Moss, A.S.; Dossou, S. and Wei, H., 2017. Dietary supplementation of β-glucan improves growth performance, the innate immune response and stress resistance of red sea bream. Aquaculture Nutrition. Vol. 23, pp: 148-159.
  17. Dimitroglou, A.; Merrifield, D.L.; Moate, R.; Davies, S.J.; Spring, P.; Sweetman, J. and Bradley, G., 2009. Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Animal Science. Vol. 87, No. 10, pp: 3226-3234.
  18. Drabkin, D.l., 1950. Spectrophotometric studies. XV. Hydration of macro sized crystals of human hemoglobin, and osmotic concentrations in red cells. Journal of Biological Chemistry. Vol. 185, No. 1, pp: 231-45.
  19. Ebrahimi, G.H.; Ouraji, H.; Khalesi, M.K.; Sudagar, M.; Barari, A.; Zarei Dangesaraki, M. and Jani Khalili, K.H., 2012. Effects of a prebiotic, Immunogen®, on feed utilization, body composition, immunity and resistance to Aeromonas hydrophila infection in the common carp Cyprinus carpio (Linnaeus) fingerlings. Journal of Animal Physiology and Animal Nutrition. Vol. 96, pp: 591-599.
  20. FAO. 2016. FishStat-Software for Fishery Statistical Time Series. United Nations Food and Agriculture Organisation, Rome.http://fao.org/fishery/statistics/software/fishstatj/en.
  21. Fazio, F.; Ferrantelli, V.; Fortino, G.; Arfuso, F.; Giangrosso, G. and Faggio, C., 2015. The influence of acute handling stress on some blood parameters in cultured sea bream (Sparus aurata Linnaeus, 1758). Italian Journal of Food Safety. Vol. 4, 1 p.
  22. Geraylou, Z.; Souffreau, C.; Rurangwa, E.; De Meester, L.; Courtin, C.M.; Delcour, J.A. and Ollevier, F., 2013. Effects of dietary arabinoxylan-oligosaccharides (AXOS) and endogenous probiotics on the growth performance, non-specific immunity and gut microbiota of juvenile Siberian sturgeon (Acipenser baerii). Fish and Shellfish Immunology. Vol. 35, No, 3, pp: 766-775.
  23. Ghaedi, G.; Keyvanshokooh, S.; Mohammadi Azarma, H. and Akhlaghi, M., 2015. Effects of dietary β-glucan on maternal immunity and fry quality of rainbow trout (Oncorhynchus mykiss). Aquaculture. Vol. 441, pp: 78-83.
  24. Ghiasi, F.; Mirzargar, S.S.; Badakhshan, H. and Shamsi, S., 2010. Effects of low concentration of cadmium on the level of lysozyme in serum, leukocyte count and phagocytic index in Cyprinus carpio under the wintering conditions. J of fisheries and Aquatic Science. Vol. 5, No, 2, pp: 113-119.
  25. Guerreiro, I.; Serra, C.R.; Enes, P.; Couto, A.; Salvador, A.; Costas, B. and Oliva-Teles, A., 2016. Effect of short chain fructooligosaccharides (scFOS) on immunological status and gut microbiota of gilthead sea bream (Sparus aurata) reared at two temperatures. Fish and Shellfish Immunology. Vol. 49, pp: 122-131.
  26. Guerreiro,I.;Oliva-Teles, A. and Enes, P., 2018. Prebiotics as functional ingredients: focus on Mediterranean fish aquaculture. Reviews in aquaculture. Vol. 10, pp: 800-832.
  27. Havixbeck, J.J. and Barreda, D.R., 2015. Neutrophil Development, Migration, and Function in Teleost Fish. Biology. Vol. 4, pp: 715-734.
  28. Hevroy, E.M.; Espe, M.; Waagbo, R.; Sandness, K.; Rund, M. and Hemer, G.I., 2005. Nutrition utilization in Atlantic salmon (Salmo salar) fed increased level of fish protein hydrolysate during a period of fast growth. Aquaculture Nutrition. Vol. 11, pp: 301-313.
  29. Hoseinifar, S.H.; Eshaghzadeh, H.; Vahabzadeh, H. and Peykaran Mana, N., 2015. Modulation of growth performances, survival, digestive enzyme activities and intestinal microbiota in common carp (Cyprinus carpio) larvae using short chain fructooligosaccharide. Aquaculture Research. Vol. 47, No. 10, pp: 3246-3253.
  30. Hoseinifar, S.H.; Mirvaghefi, A.; Merrifield, D.L.; Amiri, B.M.; Yelghi, S. and Bastami, K.D., 2011. The study of some haematological and serum biochemical parameters of juvenile beluga (Huso huso) fed oligofructose. Fish Physiology and Biochemistry. Vol. 37, No. 1, pp: 91-96.
  31. Jung-Schroers, V.; Adamek, M.; Jung, A.; Harris, S.; Doza, O. S.; Baumer, A. and Steinhagen, D., 2016. Feeding of beta-1,3/1,6-glucan increases the diversity of the intestinal microflora of carp (Cyprinus carpio). Aquaculture Nutrition. Vol. 22, pp: 1026-1039.
  32. Jung-Schroers, V.; Adamek, M.; Harris, S.; Syakuri, H.; Jung, A.; Irnazarow, I. and Steinhagen, D., 2018. Response of the intestinal mucosal barrier of carp (Cyprinus carpio) to a bacterial challenge by Aeromonas hydrophila intubation after feeding with β-1,3/1,6-glucan. Journal of Fish Disease. Vol. 41, No. 7, pp: 1077-1092.
  33. Kumari, J. and Sahoo, P.K., 2006. Dietary beta-1,3 glucan potentiates innate immunity and disease resistance of Asian catfish, Clarias batrachus (L.). Journal of Fish Diseases.
    Vol. 29, pp: 95-101.
  34. Lam, K.L. and Cheung, P.C.K., 2013. Non-digestible long chain beta-glucans as novel prebiotics. Bioactive Carbohydrates and Dietary Fibre. Vol. 2, pp: 45-64.
  35. Li, P. and Gatlin, D.M., 2004. Dietary brewer's yeast and the prebioticGrobiotic®-Ainfluence growth performance, immune responses and resistance of hybrid striped bass (Morone chrysops × M. saxatilis) to Streptococcus iniae infection. Aquaculture. Vol. 231, pp: 445-456.
  36. Machado, M.; Azeredo, R.; Díaz-Rosales, P.; Afonso, A.; Peres, H.; Oliva-Teles, A. and Costas. B., 2015. Dietary tryptophan and methionine as modulators of European seabass (Dicentrarchus labrax) immune status and inflammatory response, Fish and Shellfish Immunology. Vol. 42, pp: 353-362.
  37. Merrifield, D.L.; Bradley, G.; Harper, G.M.; Baker, R.T.M.; Munn, C.B. and Davies, S.J., 2009. Assessment of the effects of vegetative and lyophilized pediococcus acidilactici on growth, feed utilization, intestinal colonization and health parameters of rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition. Vol. 17, pp.73-79.
  38. Mohajer Esterabadi, M.; Vahabzadeh, H.; Zamani, A.A.; Soudagar, M. and Ghorbani, N.R., 2010. Effect of dietary immunogen prebiotics on growth and survival indices of giant sturgeon (Huso huso Linne, 1758) juveniles. Journal of Fisheries. Vol. 4, pp: 610-672.
  39. Morshedi, V.; Agh, N.; Noori, F.; Jafari, F.; Tukmechi, A.; Marammazi, J. and Pagheh, E., 2018. Effects of dietary xylooligosaccharide on growth and feeding performance, body composition and physiological responses of sobaity seabream (Sparidentex hasta) juvenile. Aquaculture Nutrition. Vol. 24, pp: 1796-1803.
  40. Mussatto, S.I. and Mancilha, I.M., 2007. Non-digestible oligosaccharides: a review. Carbohydrate polymers. Vol. 68, No. 3, pp: 587-597.
  41. Osuigwe, D.I.; Obiekezie, A.I. and Onuoha, G.C., 2005. Some hematological changes in hybrid catfish (Heterobranchus longifilis × Clarias gariepinus) fed different dietary levels of raw and boiled jack bean (Canavalia ensiformis) seed meal. African Journal of Biotechnology. Vol. 4, pp: 1017-1021.
  42. Poorbagher, H.; Hosseini, S.V.; Hosseini, S.M.; Aflaki, F. and Regenstein, J.M., 2017. Metal accumulation in Caspian sturgeons with different feeding niches, condition factor, body size & age. Microchemical journal. Vol. 132, pp: 43-48.
  43. Pryor, G.S.; Royes, J.B.; Chapman, F.A. and Miles, R.D., 2003. Mannanoligosaccharides in fish nutrition: effects of dietary supplementation on growth and gastrointestinal villi structure in Gulf of Mexico sturgeon. North American Journal of Aquaculture. Vol. 65: pp: 106-111.
  44. Ramezani, S.; Eshaghzadeh, H.; Saeimee, H. and Darvishi, S., 2018. Subyearling Siberian sturgeon Acipenser baerii fed a diet supplemented with ImmunoGen: Effects on growth performance, body composition, and hematological and serum biochemical parameters. Journal of Aquatic Animal Health. Vol. 30, No. 2, pp: 155-163.
  45. Roberfroid, M.B., 2005. Introducing inulin-type fructans. British Journal of Nutrition. Vol. 93, No, 1, pp: 13-26.
  46. Ross, L.G. and Ross, B., 1999. Anasthetic and sedative techniques for aquatic animals. Edited by LG Ross and B Ross. 2nd Ed. Blackwell Science, Oxford, UK. pp: 22-57.
  47. Sado, R.Y.; Bicudo, A.J. and Cyrino, J.E., 2014. Growth and intestinal morphology of juvenile pacu Piaractus mesopotamicus (Holmberg 1887) fed dietary prebiotics (mannan oligosaccharides-MOS). Anais da Academia Brasileira de Ciências. Vol. 86, No. 3, pp: 1517-1524.
  48. Salem, M.; Gaber, M.M.; Zaki, M.A.D. and Nour, A.A., 2016. Effects of dietary mannan oligosaccharides on growth, body composition and intestine of the sea bass (Dicentrarchus labrax L.). Aquaculture Research. Vol. 47, No. 11, pp: 3516-3525.
  49. Sang, H.M.; Fotedar, R. and Filer, K., 2010. Effects of dietary mannan oligosaccharide on the survival, growth immunity and digestive enzyme activity of freshwater crayfish, Cherax destructor. Aquaculture Nutrition. Vol. 17, pp: 629-635.
  50. Selvaraj, V.; Sampath, K. and Sekar, V., 2006. Adjuvant and immunostimulatory effects of beta-glucan administration in combination with lipopolysaccharide enhances survival and some immune parameters in carp challenged with Aeromonas hydrophila. Veterinary Immunology and Immunopathology. Vol. 114, pp: 14-24.
  51. Shen, Y.; Wang, D.; Zhao, J. and Chen, X., 2018. Fish red blood cells express immune genes and responses. Aquaculture and Fisheries, Vol. 3, No. 1, pp: 14-21.
  52. Soleimani, N.; Hoseinifar, S.H.; Merrifield, D.L.; Barati, M. and Abadi, Z.H., 2012. Dietary supplementation of fructooligosaccharide (FOS) improves the innate immune response, stress resistance, digestive enzyme activities and growth performance of Caspian roach (Rutilus rutilus) fry. Fish and Shellfish Immunology. Vol. 32, No. 2, pp: 316-321.
  53. Song, S.K.; Beck, B.R.; Kim, D.; Park, J.; Kim, J.; Kim, H.D. and Ringø, E., 2014. Prebiotics as immunostimulants in aquaculture: a review. Fish and Shellfish Immunology. Vol. 40, No. 1, pp: 40-48.
  54. Taati, R.; Soltani, M.; Bahmani, M. and Zamini, A.A., 2011. Effects of the prebiotics Immunoster and Immunowall on growth performance of juvenile beluga (Huso huso). J of Applied Ichthyology. Vol. 27, pp: 796-798.
  55. Tacon, A.G.J., 1990. Standard Methods for the Nutrition and Feeding of Famed Fish and Shrimp. Argent Laboratories Press. Redmond. Washington, USA. Vol. 4, 24 P.
  56. Wang, Q.; Cheng, L.; Liu, J.; Li, Z.; Xie, S. and De Silva, S.S., 2015. Freshwater aquaculture in PR China: trends and prospects. Review Aquaculture. Vol. 7, No. 4, pp: 283-302.
  57. Welch, A.A.; Lund, E.; Amiano, P.; Dorronsoro, M.; Brustad, M. and Kumle, M., 2002. Variability of fish consumption within the 10 European countries participating in the European investigation into cancer and nutrition (EPIC) study. Public Health Nutrition. Vol. 5, pp: 1273-1285.
  58. Welker, T.L.; Lim, C.; Yildirim-Aksoy, M.; Shelby, R. and Klesius, P.H., 2007. Immune response and resistance to stress and Edwardsiella ictaluri, fed diets containing commercial whole cell yeast or yeast subcomponents. Journal of The World Aquaculture Society. Vol. 38, pp: 24-35.
  59. Wu, Y.; Liu, W.B.; Li, H.Y.; Xu, W.N.; He, J.X.; Li, X.F. and Jiang, G.Z., 2013. Effects of dietary supplementation of fructooligosaccharide on growth performance, body composition, intestinal enzymes activities and histology of blunt snout bream (Megalobrama amblycephala) fingerlings. Aquaculture Nutrition. Vol. 19, pp: 886-894.
  60. Yarahmadi, P.; Farahmand, H.; Miandare, H.K.; Mirvaghefi, A. and Hoseinifar, S.H., 2014. The effects of dietary Immunogen® on innate immune response, immune related genes expression and disease resistance of rainbow trout. Fish and Shellfish Immunology. Vol. 37, pp: 209-214.
  61. Zhang, Q.; Yu, H.; Tong, T.; Tong, W.; Dong, L.; Xu, M. and Wang, Z., 2014. Dietary supplementation of Bacillus subtilis and fructooligosaccharide enhance the growth, non specific immunity of juvenile ovate pompano, Trachinotus ovatus and its disease resistance against Vibrio vulnificus. Fish and Shellfish Immunology. Vol.38, pp:7-14.