Evaluation of oxygen changes on gill and spleen tissue of Caspian Sea Salmon (Salmo trutta caspius)

Document Type : Physiology (Animal)

Authors

1 Department of Fisheries, Bandar abbas Branch, Islamic Azad University, Bandar abbas, Iran

2 Department of Fisheries , Lahijan Branch, Islamic Azad University, Lahijan, Iran,

3 Inland Water Aquaculture Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bandar Anzali, Iran

Abstract

 Caspian brown trout is one of the most valuable fishes in the Caspian Sea and has great value due to its marketability, appearance and taste of meat. This study was carried out to determine the effects of oxygen stresses on histopathology of gill and spleen in Caspian brown trout in Shahid Bahonar reproduction and breeding Center of Kelardasht in winter 2016. 210 fish with average weigh 50±10 gr were randomly selected and placed in tanks with aerator and oxygen capsule. Fish were divided into 3 treatments: treatment 1 or hypoxia (2-3 mg/l oxygen), treatment 2 or normoxia (7-8 mg/l oxygen) and treatment 3 or hyperoxia (12-14 mg/l oxygen) and each treatment had three replications. At the end of the experiment, sampling gill and spleen were performed for measuring histological injuries. Gill and spleen specimens were transferred to Inland Waters Aquaculture Research Center for histopathological examination. The results showed symptoms in all treatments, which included hemorrhage, clubbing or torsion of the lamella, epithelial hypertrophy, local and diffuse hyperplasia, necrosis, hyperemia, telangiectasia, lamella adhesion and the separated epithelium from lamella in gill and hyperemia, necrosis, vacuolation in the cytoplasm of cells, hemosiderin and sinusoids in spleen. In general, it can be said that the oxygen level of 7-8 mg/l is the most favorable condition for Caspian brown trout.

Keywords


  1. Akhundov, M.M. and Fedorov, K.Ye., 1995. Effect of exogenous estradiol on ovarian development in juvenile starlet (Acipenser ruthenus). Journal of Ichthyology. Vol. 33, pp: 109-120.
  2. Bagherzadeh Lakani, F.; Sattari, M.; Sharifpour, I. and Kazemi, R., 2013. Effect of hypoxia, normoxia and hyperoxia conditions on gill histopathology in two weight groups of beluga (Huso huso). Caspian Journal of Environmental Sciences. Vol. 11, No. 1, pp: 77-84.
  3. Bahre kazemi, M.; Soltani, M.; Matinfar, A. and Abtahi, B., 2011. Biochemical and histological studies of over ripened oocyte in the Caspian brown trout (Salmo trutta caspius). Iranian journal of fisheries sciences. pp: 33-48.
  4. Balasundaram, C., 2001. Histopathological screening of the tissues of the finish and shellfish harvested from the Valaichennai and Morgottanchemai Lagoon. Sri Lanka 6 Asian Fisheries Forum Book of Abstracts. Mayaman Townhomes 25 Mayaman St. Village, Quezan City, Philippinean Asian Fisheries Society. 20 P.
  5. Barillet, S.; Larno, V.; Floriani, M.; Devaux, A. and Adam-Guillermin, Ch., 2010. Ultrastructural effects on gill, muscle, and gonadal tissues induced in zebrafish (Danio rerio) by a waterborne uranium exposure. Aquatic Toxicology. Vol. 100, pp: 295-302.
  6. Bell, J.G. and Sargent, J.R., 2003. Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture. Vol. 218, pp: 491-499.
  7. Bhagwant, S. and Elahee, K.B., 2002. Pathologic gill lesions in two edible lagoon fish species, Mulloidichthys flavolineatus and Mugil cephalus, from the bay of poudre d'or, Mauritius, Western Indian Ocean. Journal of Marine Science. Vol. 1, No. 1, pp: 35-42.
  8. Bowden, A.J.; Gardiner, N.M.; Couturier, C.S.; Stecyk, J.A.; Nilsson, G.E.; Munday, P.L. and Rummer, J.L., 2014. Alterations in gill structure in tropical reef fishes as a result of elevated temperatures. Comparative Biochemistry and Physiology. Vol. 175, pp: 64-71.
  9. Boyd, C.E., 1982. Water quality management for pond fish culture. Elsevier Scientific Publishing Company. Amsterdam, the Netherlands. 318 P.
  10. Brauner, C.J.; Seidelin, M.; Madsen, S.S. and Jensen, F.B., 2000. Effects of freshwater hyperoxia and hypercapnia and their influences on subsequent seawater transfer in Atlantic salmon (Salmo salar) smolts. Canadian Journal of Fisheries and Aquatic Sciences. Vol. 57, pp: 2054-2064.
  11. Brett, J.R. and Groves, T.D.D., 1979. Physiological energetics. In Fish Physiology. Edited by WS Hoar.; DJ Randall and JR Brett. Vol. VIII. Academic Press. New York. pp: 279-352.
  12. Buentello, J.A.; Gatlin, D.M. and Neill, W.H., 2000. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus). Aquaculture. Vol. 182, pp: 339-352.
  13. Caliskan, M.; Erkmen, B. and Yerli, S.V., 2003. The effects of zeta cypermethrin on the gills of common guppy Lebistes reticulatus. Environmental Toxicology and Pharmacology. Vol. 14, pp: 117-120.
  14. Cengiz, E.I., 2006. Gill and kidney histopathology in the freshwater fish Cyprinus carpio after acute exposure to deltamethrin. Environmental Toxicology and Pharmacology. Vol. 22, pp: 200-204.
  15. Chandra, K.J., 1987. Fish health monitoring and control of disease. In training manual of training on integrated farming to the upazila fisheries officer. DOF. Bang. Vol. 1, 155 P.
  16. De Silva, P.M.C.S. and Samayawardhena, L.A., 2002. Low concentrations of lorsban in water result in far reaching behavioral and histological effects in early life stages in guppy. Ecotoxicology and Environmental Safety. Vol. 53, pp: 248-254.
  17. Farkas, J.; Christian, P.; Gallego-Urrea, J.A.; Roos, N.; Hassellov, M.; Tollefsen, K.E. and Thomas, K.V., 2011. Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquatic Toxicology. Vol. 101, pp: 117-125.
  18. Fournie, J.W.; Summers, J.K.; Courtney, L.A.; Engle, V.D. and Blazer, V.S., 2001. Utility of splenic macrophage aggregates as an indicator of fish exposure to degraded environments. Journal of Aquatic Animal Health. Vol. 13, No. 2, pp: 105-116.
  19. Gallaugher, P. and Farrell, A.P., 1998. Hematocrit and blood oxygen-carying capacity. Fish Physiology, 17, Fish Respiration. Academic Press. San Diego. Vol. 101, pp: 185-227.
  20. Gisberta, E.; Rodrı´guezb, A.; Cardonac, L.; Huertasa, M.; Gallardod, M.A.;Sarasquetee, C.;Sala Rabanald, M.; Ibarzd, A.; Sa´nchezd, J. and Castello´-Orvayb, F., 2004. Recovery of Siberian sturgeon yearlings after an acute exposure to environmental nitrite: changes in the plasmatic ionic balance, Na+--KATPase activity, and gill histology. Aquaculture. Vol. 239, pp: 141-154.
  21. Goldes, S.A.; Ferguson, H.W.; Moccia, R.D. and Daoust, P.Y., 1988. Histological effects of the inert suspended clay kaolin on the gills of juvenile rainbow trout, Salmo gairdneri. Journal of Fish Diseases. Vol. 11, pp: 23-34.
  22. Good, Ch.; Davidson, J.; Welsh, C.; Snekvik, K. and Summerfelt, S., 2010. The effects of carbon dioxide on performance and histopathology of rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems. Aquacultural Engineering. Vol. 42, pp: 51-56.
  23. Habibi, E.; Kalbassi, M.R.; Hosseini, S.J. and Qasemi, S.A., 2013. Feasibility of Identification of Fall and Spring Migrating Caspian trout (Salmo trutta caspius) by Using AFLP Molecular Marker. Turkish Journal of Fisheries and Aquatic Sciences. Vol. 13, pp: 241-248.
  24. Hajirezaee, S.; Mojazi Amiri, B. and Mirvaghefi, A.R., 2010. Relationships Between the Chemical Properties of Seminal Fluid and the Sperm Motility Characteristics of Caspian Brown Trout, Salmo Trutta Caspius (A Critically Endangered Salmonid Fish). Research Journal of Fisheries and Hydrobiology. Vol. 5, No. 1, pp: 27-31.
  25. Hao, L.; Chen, L.; Hao, J. and Zhong, M., 2013. Bioaccumuulation and sub-acute toxicity of zinc nanoparticles in juvenile carp (Cyprinus carpio): A comparative study with its bulk counterparts. Ecotoxicology and Environmental Safety. Vol. 91, pp: 52-60.
  26. Heisler, N., 1993. Acid-base regulation in response to changes of the environment: characteristics and capacity. In Fish Ecophysiology. Edited by JC Rankin and FB Jensen. Chapman and Hall. New York. pp: 207-230.
  27. Ibrahim, S.A., 2013. Effect of Water Quality Changes on Gills and Kidney Histology of Oreochromis niloticus Fish Inhabiting the Water of Rosetta Branch, River Nile, Egypt. World Applied Sciences Journal. Vol. 26, No. 4, pp: 438-448.
  28. Jobling, M., 1995. Environmental biology of fishes. Chapman and Hall Fish and fisheries series. Vol. 16, pp: 1-35.
  29. Karlsson-Norrgren, L.; Dickson, W.; Ljungberg, O. and Runn, P., 1986a. Acid water and aluminium exposure: gill lesions and alumunuium accumulation in farmed brown trout, Salmo trutta. Journal of Fish Diseases. Vol. 9, pp: 1-10.
  30. Karlsson-Norrgren, L.; Björklund, I.; Ljungberg, O. and Runn, P., 1986b. Acid water and aluminium exposure: experimentally induced gill lesions in brown trout, Salmo trutta. Journal of Fish Diseases. Vol. 9, pp: 11-26.
  31. Khaksary Mahabady, M.; Morovvati, H.; Arefi, A. and Karamifar, M., 2012. Anatomical and Histomorphological Study of Spleen and Pancreas in Berzem (Barbus pectoralis). World Journal of Fish and Marine Sciences. Vol. 4, No. 3, pp: 263-267.
  32. Korai, A.L.; Lashari, K.H.; Sahato, G.A. and Kazi, T.G., 2010. Histological Lesions in Gills of Feral Cyprinids, Related to the Uptake of Waterborne Toxicants from Keenjhar Lake. Reviews in Fisheries Science. Vol. 18, pp: 157-176.
  33. Lee, C.S. and Donaldson, E., 2001. General discussion on Reproductive biotechnology in finfish aquaculture. Aquaculture. pp: 303-320.
  34. Mallatt, J., 1985. Fish Gill Structural Changes Induced by Toxicants and Other Irritants: A Statistical Review. Canadian Journal of Fisheries and Aquatic Sciences. Vol. 42, No. 4, pp: 630-648.
  35. Mallya, Y.J., 2007. The effects of dissolved oxygen on fish growth in aquaculture. UNU-Fisheries Training Programme. Final Project. pp: 75-92.
  36. Martinez, C.B.R.; Nagae, M.Y.; Zaia, C.T.B.V. and Zaia, D.A.M., 2004. Morphological and physiological acute effects of lead in the Neotropical fish Prochilodus lineatus. Brazilian Journal of Biology. Vol. 64, No. 4, pp: 797-807.
  37. Matey, V.; Richards, J.G.; Wang, Y.; Wood, C.M.; Rogers, J.; Davies, R.; Murray, B.W.; Chen, X.Q.; Du, J. and Brauner, C.J., 2008. The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii. The Journal of Experimental Biology. Vol. 211, pp: 1063-1074.
  38. Olson, K.R. and Fromm, P.O., 1973. Ascanning electron microscopic study of secondary lamellae and chloride cells of rainbow trout (Salmo gairdneri). Zeitschrift fur Zellforschung und mikroskopische Anatomie. Vol. 143, pp: 439-449.
  39. Olson, K.R.; Fromm, P.O. and Frantz, W.L., 1973. Ultrastructural changes of rainbow trout gills exposed to methyl mercury or mercuric chloride. Federal Procedure. Vol. 32, 261 P. In The fish gill: site of action and model for toxic effects of environmentalpollutants. Edited by DH Evans. 1987. Environmental Health Perspectives. Vol. 71, pp: 47-58.
  40. Olsvik, P.A.; Kristensen, T.; Waagbø, R.; Tollefsen, K.E.; Rosseland, B.O. and Toften, H., 2006. Effects of hypo- and hyperoxia on transcription levels of five stress genes and the glutathione system in liver of Atlantic cod Gadus morhua. The Journal of Experimental Biology. Vol. 209, pp: 2893-2901.
  41. Pane, E.F.; Haque, A. and Wood, C.M., 2004. Mechanistic analysis of acute, Niinduced respiratory toxicity in the rainbow trout (Oncorhynchus mykiss): an exclusively branchial phenomenon. Aquatic Toxicology. Vol. 69, pp: 11-24.
  42. Parker, T.M., 2013. Effects of the interaction of environmental factors (hypoxia and ammonia) on fish. Thesis for the Degree Master of Science. The Ohio State University. 72 P.
  43. Pichavant, K.; Person-Le-Ruyet, J.; Le Bayon, N.; Severe, A.; Le Roux, A. and Boeuf, G., 2001. Comparative effects of long-term hypoxia on growth, feeding and oxygen consumption in juvenile turbot and European sea bass. Journal of Fish Biology. Vol. 59, No. 4, pp: 875-883.
  44. Rafatnezhad, S. and Falahatkar, B., 2011. Nitrogenous compounds and oxygen concentration as the key density dependent factors to optimize growth of beluga, Huso huso (Actinopterygii: Acipenseriformes: Acipenseridae), in circular fiberglass tanks. Acta Ichthyologica, Piscaoriat. 
    Vol. 41, No. 4, pp: 285-291.
  45. Reiser, S.; Schroeder, J.P.; Wuertz, S.; Kloas, W.R. and Hanel, W., 2010. Histological and physiological alterations in juvenile turbot (Psetta maxima, L.) exposed to sublethal concentrations of ozone-produced oxidants in ozonated seawater. Aquaculture. Vol. 307, pp: 157-164.
  46. Reiser, S.; Wuertz, S.; Schroeder, J.P.; Kloas, W.R. and Hanel, W., 2011. Risks of seawater ozonation in recirculation aquaculture, effects of oxidative stress on animal welfare of juvenile turbot (Psetta maxima). Aquatic Toxicology. Vol. 105, pp: 508-517.
  47. Rodrigues, R.V.; Schwarz, M.H.; Delbos, B.C.; Carvalho, E.L.; Romano, L.A. and Sampaio, L.A., 2011. Acute exposure of juvenile cobia Rachycentron canadum to nitrate induces gill, esophageal and brain damage. Aquaculture. Vol. 3, pp: 223-226.
  48. Rojik, I.; Nemcsok, J. and Boross, L., 1983. Morphological and biochemical studies on liver, kidney and gill of fishes affected by pesticides. Acta Biologica Hungarica. Vol. 34, No. 1, pp: 81-92.
  49. Rosety Rodrigueiz, M.; Ordonez, F.J.; Rosety, M.; Rosety, J.M.; Ribelles, A. and Carrasco, C., 2002. Morphohisto-chemical changes in the gills of turbot, Scophthalmus maximus induced by sodium dodecyl sulfate. Ecotoxicology and Environmental Safety. Vol. 51, pp: 223-228.
  50. Saber, T.H., 2011. Histological Adaptation to Thermal Changes in Gills of Common Carp Fishes Cyprinus carpio. Rafidain journal of science. Vol. 22, No. 1, pp: 46-55.
  51. Salas-Leiton, E.; Cánovas-Conesa, B.; Zerolo, R.; López-Barea, J.; Cañavate, J.P. and Albama, J., 2009. Proteomics of juvenile Senegal sole (Solea senegalensis) affected by gas bubble disease in hyperoxygenated ponds. Journal of Marine Biotechnology. Vol. 11,
    pp: 473-487.
  52. Schwaiger, J.; Ferling, H.; Mallow, U.; Wintermayr, H. and Negele, R.D., 2004. Toxic effects of the non steroidal anti-inflammatory drug diclofenac. Part I. Histopathological alterations and bioaccumulation in rainbow trout. Aquatic Toxicology. Vol. 68, No. 2, pp: 141-150.
  53. Takabe, S.; Teranishi, K.; Takaki, S.; Kusakabe, M.; Hirose, S.; Kaneko, T. and Hyodo. S., 2012. Morphological and functional characterization of a novel Na+/K+-ATPase-immunoreactive, follicle-like structure on the gill septum of Japanese banded houndshark, Triakis scyllium. Cell and Tissue Research. Vol. 348, pp: 141-153.
  54. Tao, S.; Li, H.; Li, C.S. and Lam, K.C., 2000. Fish uptake of inorganic and mucous complexes of lead. Ecotoxicology and Environmental Safety. Vol. 46, pp: 174-180.
  55. Taylor, J.C. and Miller, J.M., 2001. Physiological performance of juvenile southern flounder, Paralychthys lethostigma (Jordan and Gilber 1884) in chronic and episodic hypoxia. Journal of Experimental Marine Biology and Ecology. Vol. 258, pp: 195-214.
  56. Terova, G.; Rimoldi, S.; Cora, S.; Bernardini, G.; Gornati, R. and Saroglia, M., 2008. Acute and chronic hypoxia affects HIF-1α mRNA levels in Sea bass (Dicentrarchus labrax). Aquaculture. Vol. 279, pp: 150-159.
  57. Van der Meer, D.L.; van der Thillart, G.E.E.J.M.; Witte, F.; de Bakker, M.A.G.; Besser, J.; Richardson, M.K.; Spaink, H.P.; Leito, J.T.D. and Bagowski, C.P., 2005. Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish. American Journal of Physiology. Vol. 289, pp: R1512-R1519.
  58. Van Heerden, D.; Vosloo, A. and Nikinmaa, M., 2004. Effects of short-term copper exposure on gill structure, methallothionein and hypoxia-inducible factor-1á (HIF 1á) levels in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology. Vol. 69, pp: 271-280.
  59. Velkova-Jordanoska, L. and Kostoski, G., 2005. Histopathological analysis of liver in fish (Barbus meridionalis petenyi) in reservoi Trebenit. Natura Croatica. Vol. 14, No. 2, pp: 147-153.
  60. Velmurugan, B.; Selvanayagama, M.; Cengiz, E.I. and Unlu, E., 2007. Histopathology of lambda-cyhalothrin on tissues (gill, kidney, liver and intestine) of Cirrhinus mrigala.  Environmental Toxicology and Pharmacology. Vol. 24, pp: 286-291.
  61. Wang, T.; Lefevre, S.; Huong, D.T.T.; Cong, N.V. and Bayley, M., 2009. Effects of hypoxia on growth and digestion. In Fish Physiology. Edited by J Richards.; CJ Braunerand AP Farrell. Vol. 27. Academic Press. San Diego. pp: 361-396.
  62. Wang, P.; Lin, C.; Hwang, L.; Huang, C.; Lee, T. and Hwang, P., 2013. Differential responses in gills of euryhaline tilapia, Oreochromis mossambicus, to various hyperosmotic shocks. Comparative Biochemistry and Physiology. Vol. 152, pp: 544-551.
  63. Wells, R.M.G. and Weber, R.E., 1990. Short communication the spleen in hypoxic and exercised rainbow trout. Journal of Experimental Biology. Vol. 150, pp: 461-466.
  64. Zaghloul, K.H.; Hanna, M.I. and Zaki, M.M., 2007. Assessment and control of nitrite toxicity in Clarias gariepinus. Egyptian Journal of Aquatic Biology and Fisheries. Vol. 11, No. 3, pp: 1047-1068.