تاثیر غلظت های مختلف دی فرمات سدیم بر شاخص های بیوشیمیایی و آنتی اکسیدانی سرم در ماهی آزاد دریای خزر (Salmo trutta caspius)

نوع مقاله : بیماری ها

نویسندگان

1 گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 گروه علوم پایه، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 گروه پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

ماهی آزاد دریای خزر  (Salmo trutta caspiusیکی از 9 زیرگونه قزل­ آلای قهوه ­ای در جهان و از گونه­ های بومی ایران می­ باشد که در معرض خطر انقراض می­ باشد. هدف از این تحقیق بررسیاثر غلظت ­های مختلف اسیدی­ فایر دی فرمات سدیم بر روی شاخص ­های بیوشیمیایی و آنتی ­اکسیدانی سرم در ماهی آزاد دریای خزر بود. بدین ­منظور، تعداد 360 قطعه بچه ­ماهی آزاد دریای خزر با وزن حدود 0/05±13 گرم به ­مدت 60 روز  با به ­کارگیری چهار جیره شامل سطوح صفر (شاهد)، 0/5، 1 و 1/5 درصد، از دی فرمات سدیم در 4 تیمار و 3 تکرار مورد بررسی قرار گرفتند. خونگیری از ماهیان در شروع آزمایش، روز 30 و پس از پایان دوره از قسمت ساقه دمی، انجام شد. در هر بار نمونه ­برداری بعد از خونگیری فعالیت آنزیم ­های کاتالاز، سوپراکسید دیسموتاز (SOD) و مالون دی آلدهید (MDA) و هم ­چنین میزان تری­ گلیسرید، کلسترول، لاکتات دی هیدروژناز LDH و گلوکز توسط روش ­های بیوشیمیایی تعیین شد. نتایج نشان داد که مقدار گلوکز در 30 روز ابتدایی آزمایش در همه تیمار­ها اختلاف معنی­ داری نسبت به گروه شاهد داشته است. مقدارکلسترول سرم خون در روز 30 در تیمار 0/5 درصد و در روز 60 در تیمار 1 درصد نسبت به گروه شاهد کاهش معنی ­داری داشته است. مقدار تری­ گلیسرید در تمام گروه ­ها به ­جز تیمار 1 درصد در انتهای دوره افزایش معنی داری نسبت به شروع آزمایش داشته است. هم ­چنین در تیمار 0/5 و 1/5 درصد در روز صفر و 30 با روز 60 اختلاف معنی ­داری مشاهده شد. میزان آنزیم LDH  در روز 30 نمونه ­برداری، در تیمار 1 درصد کاهش معنی­ داری نسبت به گروه شاهد داشته است. در مورد میزان کاتالاز سرم در روز 60آزمایش اختلاف معنی ­داری میان تیمارهای اسیدی ­فایر با گروه شاهد مشاهده نشد. میزان SOD پس از 60 روز نسبت به گروه شاهد معنی ­دار نبوده است. میزان فعالیت مالون دی آلدهید در تیمار 1 درصد در روز 30 و 60 نمونه­ برداری و تیمار 1/5 درصد در روز 60، اختلاف معنی­ داری با گروه شاهد داشتند. نتایج این تحقیق نشان می ­دهد که تیمارهای اسیدی­ فایر به خصوص تیمار 1 و 1/5 درصد تاثیر معنی­ دار در فاکتور بیوشیمایی و دفاع آنتی ­اکسیدانی ماهی آزاد تا 30 روز اول از خود نشان داده ­اند اما در 30 روز دوم ازمایش نتایج برعکس بود.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of different concentrations of sodium di-formate on serum biochemical and antioxidant indices in Salmo trutta caspius

نویسندگان [English]

  • Hossien Momeni 1
  • Mehrzad Masbah 1
  • Takavar Mohammadian 1
  • Mohamad Reza Tabandeh 2
  • Mohammad Khosravi 3
1 Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Department of Basic science, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Caspian brown trout (Salmo trutta caspius) is one of the nine subspecies of brown trout in the world and is one of the economically and endangered species of Iran. This study aimed to investigate the effect of sodium diformate as an acidifier on biochemical and antioxidant indices in Caspian salmon. For this purpose, the Caspian brown trout fries (salmo trutta caspius) that weight 13±0.05 gr were recruiting for 60 days by employing four diets consisting of levels of zero (control), 0.5, 1 and 1.5 percent with 3 repeats and blood sampling was done at the beginning of the experiment, day 30 and after the end of the test. Biochemical methods were used to determine the activity of catalase, superoxide dismutase (SOD) and malondialdehyde (MDA) enzymes, as well as triglyceride, cholesterol, LDH lactate dihydrogenase and glucose levels. The results showed that the amount of glucose in the first day of all treatments significantly differed from the control group. The amount of serum cholesterol on 30 days of the 0.5% treatment and 60 days of the 1% treatment was significantly decreased in contrast with the control. The triglyceride concentration in all of the groups except the 1% treatment was higher than the beginning of the experiment. Besides, there were significant differences between 0 and 30 days and on day 60 of 0.5 and 1.5% treatments. LDH enzyme level was significantly decreased on day 60 of the 1% treatment when compared to control group. Serum catalase level was not significantly different from the control group on day 60. SOD level after 60 days was not significant compared to the control group. The amount of malondialdehyde (MDA) activity on days 30 and 60 of the 1 and on day 60 of the 1.5% treatment was significantly different from control. The results of this study showed that the acidifier treatments (1%
and 1.5%) had a significant effect on the biochemical factor and antioxidant defense of brown trout caspius for the first 30 days but in the second 30 days the results were the opposite.

کلیدواژه‌ها [English]

  • Short-chain fatty acids
  • Salmo trutta caspius
  • Sodium diformate
  • Biochemical indices
  • Antioxidant enzymes
  1. Alexandratos, N. and Bruinsma, J., 2012. World agriculture towards 2030/2050: the 2012 revision. ESA Working paper FAO, Rome. pp: 4-98.
  2. Arthur, R.I.; Lorenzen, K.; Homekingkeo, P.; Sidavong, K.; Sengvilaikham, B. and Garaway, C.J., 2010. Assessing impacts of introduced aquaculture species on native fish communities: Nile tilapia and major carps in SE Asian freshwaters. Aquaculture. Vol. 299, pp: 81-88.
  3. Baruah, K.; Pal, A.K.; Sahu, N.P.; Debnath, D.; Yengkokpam, S.; Norouzitallab, P. and Sorgeloos, P., 2009. Dietary Crude Protein, Citric Acid and Microbial Phytase Interacts to Influence the Hemato‐Immunological Parameters of Rohu, Labeo Rohita, Juveniles. Journal of the World Aquaculture Society. Vol. 40, No. 6, pp: 824-831.
  4. Baruah, K.; Sahu, N.P.; Pal, A.K.; Debnath, D.; Yengkokpam, S. and Mukherjee, S.C., 2007b. Interactions of dietary microbial phytase, citric acid and crude protein level on mineral utilization by rohu Labeo rohita (Hamilton), juveniles. World Aquaculture Society. Vol. 38, pp: 238-249.
  5. Baruah, K.; Sahu, N.P.; Pal, A.K.; Jain, K.K.; Debnath, D. and Mukherjee, S.C., 2007a. Dietary microbial phytase and citric acid synergistically enhances nutrient digestibility and growth performance of Labeo rohita (Hamilton) juveniles at sub-optimal protein level. Aquaculture Research. Vol. 38, pp: 109-120.
  6. Cabello, F.C., 2006. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental Microbiology. Vol. 8, pp: 1137-1144.
  7. Canibe, N.; Steien, S.; Overland, M. and Jensen, B.B., 2001. Effect of K-diformate in starter diets on acidity, microbiota, and the amount of organic acids in the digestive tract of piglets, and on gastric alterations. Journal of Animal Science. Vol. 79, pp: 2123-2133.
  8. Casewell, M.; Friis, C.; Marco, E.; McMullin, P. and Phillips, I., 2003. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. The Journal of Antimicrobial Chemotherapy. Vol. 52, No. 2, pp: 159-161.
  9. Da Silva, B.C.; Vieira, F.D.N.; Mourino, J.L.P.; Ferreira, G.S. and Seiffert, W.Q., 2013. Salts of organic acids selection by multiple characteristics for marine shrimp nutrition. Aquaculture. Vol. 384-387, pp: 104-110.
  10. Denev, S.; Staykov, Y.; Moutafchieva, R. and Beev, G., 2009. Microbial ecology of the gastrointestinal tract of fish and the potential application of probiotics and prebiotics in finfish aquaculture. International Aquatic Research. Vol. 1, pp: 1-29.
  11. Djousse, L.; Hunt, S.C. and Arnett, D.K., 2003. Dietary linoleic acid is inversely associated with plasma triacylglycerol: the national heart, lung, and blood institute family heart study. The American journal of clinical nutrition. Vol. 78, pp: 1098-1102.
  12. Eidelsburger, O., 1998. In recent advances in nutrition. Nottingham University press, Nottingham. pp: 93-106.
  13. Ellman, G.L., 1959. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics.Vol. 82, pp: 70-77.
  14. Fahimi, Z.; Cheraghi, J.; Pilehvarian, A.A.; Sayehmiri, K. and Khosravi, A., 2011. Effects of Alcea angulata root alcoholic extract on blood ipid of male rabbit. Scientific Journal of Ilam University of Medical Sciences. Vol. 20, No. 2, pp: 23-32.
  15. Freitag, M., 2007. Organic acids and salts promote performance and health in animal husbandry. In: Luckstadt, C., editor. Acidifiers in Animal Nutrition – A Guide for Feed Preservation and Acidification to Promote Animal Performance. 1st ed, Nottingham University Press, Nottingham, UK. pp: 1-11.
  16. Frisch, S. and Murray, S., 2002. The diversity and availability of Caulerpa species found in retail aquarium outlets in southern California, USA. Journal of Phycology. Vol. 38, pp: 1-11.
  17. Gormaz, J.G.; Fry, J.P.; Erazo, M. and Love, D.C., 2014. Public health perspectives on aquaculture. Current Environmental Health Reports. Vol. 1, pp: 227-238.
  18. Hassaan, M.S.; Wafa, M.A.; Soltan, M.A.; Goda, A.S. and Mogheth, N.M.A., 2014. Effect of dietary organic salts on growth, nutrient digestibility, mineral absorption and some biochemical indices of Nile tilapia; Oreochromis niloticus L. fingerlings. Oreochromis niloticus. pp.47-55.
  19. Hayek, S.A.; Gyawali, R. and Ibrahim, S.A., 2013. Antimicrobial Natural Products. Microbial pathogens and strategies for combating them: science, technology and education. pp: 910-921.
  20. Hossain, M.A.; Pandey, A. and Satoh, S., 2007. Effects of organic acids on growth and phosphorus utilization in red sea bream Pagrus major. Fisheries science. Vol. 73, pp: 1309-1317.
  21. Johnson, A.M., 1999. Low levels of plasma proteins: malnutrition or inflammation? Clinical chemistry and laboratory medicine. Vol. 37, No. 2, pp: 91-96.
  22. Kalantarian, S.H.; Mirzargar, S.S.; Rahmati-Holasoo, H.; Sadeghinezhad, J. and Mohammadian, T., 2019. Effects of oral administration of acidifier and probiotic on growth performance, digestive enzymes activities and intestinal histomorphology in Salmo trutta caspius (Kessler, 1877). ‏Iranian Journal of Fisheries Sciences. DOI: 10.22092/ijfs.2019.119077.
  23. Kalbasi, M.R.; Dorafshan, S.; Tavakolian, T.; Khazab, M. and Abdolhay, H., 2006. Karyological analysis of endangered Caspian salmon, Salmo trutta caspius. Aquaculture Research. Vol. 37, pp: 1341-1347.
  24. Kav, K. and Erganis, O., 2008. Antibiotic fusceptibility of Lactococcus garvieae in rainbow trout (Oncorhyncus mykiss) Farms. Bulletin of the Veterinary Institute in Pulawy. Vol. 52, pp: 223-226.
  25. Kavitha, K.; Reddy, A.G.; Reddy, K.K.; Kumar, C.S.; Boobalan, G. and Jayakanth, K., 2016. Hypoglycemic, hypolipidemic and antioxidant effects of pioglitazone, insulin and synbiotic in diabetic rats. Veterinary World. Vol. 9, No. 2, pp: 118-121.
  26. Khajepour, F.; Hosseini, S.A. and MaHoseini, S., 2011. Studyon some hematological and biochemical parameters of juvenile beluga (Huso huso) fed citric acid supplemented diet. Global Veterinaria. Vol. 7, pp: 361-364.
  27. Kim, Y.; Kil, D.; Oh, H. and Han, I.K., 2005. Acidifier as an alternative material to antibiotics in animal feed. Asian Australasian Journal of Animal Sciences. Vol. 18, pp: 1048.
  28. Kocabaş, M. and Başçinar, N., 2013. The effect of salinity on spotting features of Salmo trutta abanticus, S. trutta fario and S. trutta labrax of cultured brown trout. Iranian Journal of Fisheries Sciences. Vol. 12, No. 3, pp: 723-732.
  29. Koroluk M.; Ivanova, L. and Maiorova, I., 1988. The method of definition of the activeness of catalase. Laboratorial work. pp: 16-19.
  30. Kumar, P.; Jain, K.; Sardar, P.; Sahu, N. and Gupta, S., 2017. Dietary supplementation of acidifier: effect on growth performance and haemato-biochemical parameters in the diet of Cirrhinus mrigala juvenile. Aquaculture international. Vol. 25, pp:2101-2116.
  31. Latha, M. and Pari, L., 2003. Preventive effects of Cassia auriculata L. flowers on brain lipid peroxidation in rats treated with streptozotocin. Molecular and Cellular Biochemistry. Vol. 243, pp: 23-28.
  32. Lim, C.; Klesius, P.H.; Li, M.H. and Robinson, E.H., 2000. Interaction between dietary levels of iron and Vitamin C on growth, hematology, immune response and resistance of channel catfish (Ictalurus punctatus) to Edwardsiella ictaluri challenge. Aquaculture. Vol. 185, pp: 313-327.
  33. Lim, C.; Klesius, P.H. and Lückstädt, C., 2010, May. Effects of dietary levels of potassium diformate on growth, feed utilization and resistance to Streptococcus iniae of Nile tilapia, Oreochromis niloticus. In 14th International Symposium on Fish Nutrition and Feeding. Qingdao, China. 472 p.
  34. Liu, Y.G., 2001. Using organic acids to control salmonella in poultry production. Common wealth Veterinary Congress, October 10, pp: 1-4.
  35. Luckstadt, C., 2008. The use of acidifiers in fish nutrition. Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. Vol. 3, No. 044, pp: 1-8.
  36. Malone, L.J., 2000. Basic concepts of chemistry, 6th edition. Wiley Inter Science. 639 p.
  37. Martínez-Álvarez, R.M.; Morales, A.E. and Sanz, A., 2005. Antioxidant defenses in fish: biotic and abiotic factors. Reviews in Fish Biology and fisheries. Vol. 15, No. 1-2, pp: 75-88.
  38. Mikelsaar, M. and Zilmer, M., 2009. Lactobacillus fermentum ME-3–an antimicrobial and antioxidative probiotic. Microbial ecology in health and disease. Vol. 21, No. 1, pp: 1-27.
  39. Mohammadian, T.; Alishahi, M.; Tabandeh, M.R.; Ghorbanpoor, M.; Gharibi, D.; Tollabi, M. and Rohanizade, S., 2016. Probiotic effects of Lactobacillus plantarum and L. delbrueckii ssp. bulguricus on some immune-related parameters in Barbus grypus. Aquaculture international. Vol. 24, No. 1, pp: 225-242.
  40. Moss, D.W. and Henderson, A.R., 1999. Clinical enzymology. In: Burtis, C.A. and Ashwood, E.R., (Eds.), Tietz Textbook of Clinical Chemistry, third ed. W.B Saunders Company, Philadelphia. pp: 617-721.
  41. Nakai, S.A. and Siebert, K.J., 2003. Validation of bacterial growth inhibition models based on molecular properties of organic acid. International Journal of Food Microbiology. Vol. 86, pp: 249-255.
  42. Niksirat, H. and Abdoli, A., 2009. On the status of the critically endangered Caspian brown trout, Salmo trutta caspius, during recent decades in the southern Caspian Sea basin (Osteichthyes: Salmonidae). Zoology in the Middle East. Vol. 46, pp: 55-60.
  43. Ng, W.K. and Koh, C.B., 2016. The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Reviews in Aquaculture. Vol. 0, pp: 1-27.
  44. Ooi, L.G. and Liong, M.T., 2010. Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. International Journal ofMolecular Sciences. Vol. 11, pp: 2499-2522.
  45. Owen, M.A.G.; Waines, P.; Bradley, G. and Davies, S., 2006. The effect of dietary supplementation of sodium butyrate on the growth and microflora of Clarias gariepinus (Burchell 1822). Abstract from the 12th International Symposium Fish Nutrition and Feeding. Vol. 147.
  46. Pandey, A. and Satoh, S., 2008. Effects of organic acids on growth and phosphorus utilization in rainbow trout (Oncorhynchus mykiss). Fisheries science. Vol. 74, pp: 867-874.
  47. Partanen, K.H. and Mroz, Z., 1999. Organic acids for performance enhancement in pig diets. Nutrition Research Reviews. Vol. 12, pp: 117-145.
  48. Peixoto, F.P.; Carrola, J.; Coimbra, A.M.; Fernandes, C.; Teixeira, P.; Coelho, L.; Conceição, I.; Oliveira, M.M. and Fontainhas-Fernandes, A., 2013. Oxidative stress responses and histological hepatic alterations in barbel, Barbus bocagei, from Vizela River, Portugal. Revista Internacional de Contaminacion Ambiental. Vol. 29, No. 1, pp: 29-38.
  49. Perez-Sanchez, T.; Balcazar, J.L.; Merrifield, D.; Carnevali, O.; Gioacchini, G. and Blas, I.D., 2011. Expression of immune-related genes in rainbow trout (Oncorhynchus mykiss) induced by probiotic bacteria during Lactococcus garvieae infection. Fish and Shellfish Immunology. Vol. 31, pp: 196-201.
  50. Raftari, M., 2009. Antibacterial activity of organic acids on the growth of selected bacteria in meat samples. Food Science and Technology. Malaysia: Universiti Putra Malaysia. 111 p.
  51. Rahayu, W.P.; Astawan, M.; Wresdiyati, T. and Mariska, S., 2013. Antidiarrheal and antioxidative capability of synbiotic yogurt to the rats. International Food Research Journal. Vol. 20, No. 2.
  52. Reda, R.M.; Mahmoud, R.; Selim, K.M. and El-Araby, I.E., 2016. Effects of dietary acidifiers on growth, hematology, immune response and disease resistance of Nile tilapia, Oreochromis niloticus. Fish and shellfish immunology. Vol. 50, pp: 255-262.
  53. Rifai, N.; Bachorik, P.S. and Albers, J.J., 1999. Lipids, lipoproteins and apolipoproteins. Tietz textbook of clinical chemistry. 3rd ed. Philadelphia: WB Saunders Company. pp: 809-861.
  54. Sacks, D.B., 1999. Carbohydrates. Burtis, C.A. and Ashwood, E.R., (Eds). Tietz Textbook of Clinical Chemistry. 3rd edition. Philadelphia: W.B Saunders Company. pp: 750-808.
  55. Saei, M.M.; Beiranvand, K.; Taee, H.M. and Nekoubin, H., 2016. Effects of different levels of BioAcid Ultra on growth performance, survival, hematologichal and biochemical parameters of fingerlings rainbow trout (Oncorhynchus mykiss). Aquaculture Research and development. Vol. 7, No. 455, pp: 2.
  56. Saint-Paul, U., 2018. Native fish species boosting Brazilian’s aquaculture development. Acta of Fisheries and Aquatic Resources. Vol. 5, pp: 1-9.
  57. Shen, W.Y.; Fu, L.L.; Li, W.F. and Zhu, Y.R., 2010. Effect of dietary supplementation with Bacillus subtilis on the growth, performance, immune response and antioxidant activities of the shrimp (Litopenaeus vannamei). Aquaculture Research. Vol. 41, No. 11, pp: 1691-1698.
  58. Skinner, J.T. and Walder, P., 1991. Fumaric and propionic acids enhances performance of broiler chickens. Poultry Science. Vol. 70, pp: 1444-1447.
  59. Skrivanova, E.; Marounek, M.; Benda, V. and Brezina, P., 2006. Susceptibility of Escherichia coli, Salmonella sp. and Clostridium perfringens to organic acids and monolaurin. Veterinarni Medicina. Vol. 3, pp: 81-88.
  60. Sun, Y.Z.; Yang, H.L.; Ma, R.L. and Lin, W.Y., 2010. Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish & shellfish immunology. Vol. 29, No. 5, pp: 803-809.
  61. Wei, L.S.; Wee, W.; Siong, J.Y.F. and Syamsumir, D.F., 2011. Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Medica Iranica. pp: 670-674.
  62. Weifen, L.; Xiaoping, Z.; Wenhui, S.; Bin, D.; Quan, L.; Luoqin, F.; Jiajia, Z. and Dongyou, Y., 2012. Effects of Bacillus preparations on immunity and antioxidant activities in grass carp (Ctenopharyngodon idellus). Fish physiology and biochemistry. Vol. 38, No. 6, pp: 1585-1592.
  63. Xie, S.; Zhang, L. and Wand, D., 2003. Effects of several organic acids on the feeding behavior of Tilapia nilotica. Journal of Applied Ichthyology. Vol. 19, pp: 255- 257.
  64. Zhou, Z.; Liu, Y.; He, S.; Shi, P.; Gao, X.; Yao, B. and Ringo, E., 2009. Effects of dietary potassium diformate (KDF) on growth performance, feed conversion and intestinal bacterial community of hybrid tilapia (Oreochromis niloticus ♀×O. aureus ♂). Aquaculture. Vol. 291, pp: 89-94.
  65. Zhu, Y.; Qiu, X.; Ding, Q.; Duan, M. and Wang, C., 2014. Combined effects of dietary phytase and organic acid on growth and phosphorus utilization of juvenile yellow catfish Pelteobagrus fulvidraco. Aquaculture. Vol. 430, pp: 1-8.