اثر غلظت های تحت کشنده دیازینون بر بیان ژن آروماتاز (cyp19a) در جنس ماده ماهی گورخری (Danio rerio)

نوع مقاله : ژنتیک

نویسندگان

گروه شیلات، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

سم دیازینون یک سم پرکاربرد در کشاورزی است و می­ تواند به ­عنوان یک خطر برای تولیدمثل آبزیان به شمار می آید. در این تحقیق تأثیر دوزهای تحت­ کشنده سم دیازینون بر بیان ژن‌ آروماتاز (Cyp19a) درجنس ماده ماهی گورخری (Danio rerio) بررسی شد. بدین منظور 600 قطعه بچه ‌­ماهی ‌گورخری با میانگین وزنی 0/01±0/15 ‌گرم  در قالب 4 گروه آزمایشی (یک گروه شاهد و 3 تیمار با 3 تکرار) به ­مدت یک­ ماه در مواجه با غلظت­ های 0/8، 1/6 و 3/2 میلی­ گرم بر لیتر سم دیازینون قرار گرفتند. در انتهای دوره از بافت گناد نمونه ‌برداری و استخراج RNA انجام شد. برای سنتز cDNA از کیت Superscript RTase استفاده ‌شد و cDNA حاصله با استفاده از پرایمرهای ژن‌ آروماتاز و ژن بتا اکتین به‌عنوان ژن رفرنس در Real Time PCR مورد بررسی قرار گرفت. ارزیابی بیان ژن آروماتاز در تیمارهای 0/8، 1/6 و 3/2 میلی­ گرم بر لیتر سم دیازینون الگوی کاهشی وابسته به دوز را نشان داد و میزان بیان ژن آروماتاز به­ ترتیب 0/98، 0/90 و 0/70 برابر گروه شاهد بود، اما این کاهش معنی­ دار نبود. نتایج مطالعه حاضر نشان می ­دهد که سم دیازینون می ­تواند اثر منفی بر تکامل رسیدگی جنسی در جنس ماده ماهی زبرا داشته باشد. 

کلیدواژه‌ها


  1. درویشی، م. و صفری، ر.، ۱۳۹۷. ماهی گورخری (Danio rerio) به عنوان مدل ژنوتوکسیکولوژی. مجله آبزیان زینتی. سال ۵، شماره ۴، صفحات ۲۳ تا ۳۴.
  2. Baatrup, E. and Henriksen, P.G., 2015. Disrupted reproductive behavior in unexposed female zebrafish (Danio rerio) paired with males exposed to low concentrations of 17α-ethinylestradiol. Aqua Toxico. Vol. 160, pp: 197-204.
  3. Barney, M.L.; Patil, J.G.; GunasekERα, R.M. and Carter, C.G., 2008. Distinct cytochrome P450 aromatase isoforms in the common carp (Cyprinus carpio): sexual dimorphism and onset of ontogenic expression. GenERαl and Compar Endocri. Vol. 156, No. 3, pp: 499-508.
  4. Carreau, S.; Bourguiba, S.; Lambard, S.; GalERαud Denis, I.; Genissel, C. and Levallet, J., 2002. Reproductive system: aromatase and estrogens. Molecul and Cellul Endocri. Vol. 193, No. 1-2, pp: 137-143.
  5. Chen, M.; Zhang, J.; Pang, S.; Wang, C.; Wang, L.; Sun, Y. and Liang, Y., 2018. Evaluating estrogenic and anti-estrogenic effect of endocrine disrupting chemicals (EDCs) by zebrafish embryo-based vitellogenin 1 (vtg1) mRNA expression. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. Vol. 204, pp: 45-50.
  6. Chen, Y.Y. and Chan, K.M., 2016. Regulation of vitellogenin (vtg1) and estrogen receptor (er) gene expression in zebrafish (Danio rerio) following the administration of Cd2+ and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Chemosphere. Vol. 147, pp: 467-476.
  7. Devlin, R.H. and Nagahama, Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aqua. Vol. 208, No. 3-4, pp: 191-364.
  8. Di Giulio, R.T. and Hinton, D.E., 2008. The Toxicology of Fishes. Taylor & Francis Group pp:1101.
  9. Dong, M.; Zhu, L.; Shao, B.; Zhu, S.; Wang, J.; Xie, H. and Wang, F., 2013. The effects of endosulfan on cytochrome P450 enzymes & glutathione S-trans fERαses in zebrafish livers. Ecotoxi and Environ Safe. Vol. 92, pp: 1-9.
  10. Dutta, H.M. and Arends, D., 2003. Effects of endosulfan on brain acetylcholinestERαse actiVtgy in juvenile bluegill sunfish. Environ Research. Vol. 91, No. 3, pp: 157-162.
  11. Eisler, R., 1986. Diazinon hazards to fish, wildlife, and invertebrates: A Synoptic review. Fish & Wildl Service. 85 p.
  12. Faheem, M.; Khaliq, S. and Lone, K.P., 2017. Disruption of the Reproductive Axis in Freshwater Fish, Catla catla, After Bisphenol-A Exposure. Zoological Science. Vol. 34, No. 5, pp: 438-444.
  13. Fenske, M. and Segner, H., 2004. Aromatase modulation alters gonadal differentiation in developing zebrafish (Danio rerio). Aquatic Toxico. Vol. 67, No. 2, pp: 105-126.
  14. Fernandino, J.; Hattori, R., Shinoda, T.; Kimura, H.; Strobl-Mazzulla, P.; Strüssmann, C. and Somoza, G., 2008. Dimorphic expression of dmrt1 and cyp19a1 during early gonadal development in pejerrey, Odontesthes bonariensis. Sexual Develop. Vol. 2, No. 6, pp: 316-324.
  15. Filby, A.L. and Tyler, C.R., 2005. Molecular characterization of estrogen receptors 1, 2a, and 2b and their tissue and ontogenic expression profiles in fathead minnow. Biol Reprod. Vol. 73, No. 4, pp: 648-662.
  16. Gustafsson, J.A., 2003. What pharmacologists can learn from recent advances in estrogen 400 ignaling. Trends Pharmacol Sci. Vol. 24, No. 9, pp: 479-485.
  17. Hinfray, N.; Baudiffier, D.; Leal, M.C.; Porcher, J.M.; Aït-Aïssa, S.; Le Gac, F.; Schulz, R.W. and Brion, F., 2011. Characterization of testicular expression of P450 17α-hydroxylase, 17,20-lyase in zebrafish and its perturbation by the pharmaceutical fungicide clotrimazole. GenERαl and Compar Endocri. Vol. 174, No. 3, pp: 309-317.
  18. Hinfray, N.; Palluel, O.; Turies, C.; Cousin, C.; Porcher, J.M. and Brion, F., 2006. Brain and gonadal aromatase as potential targets of endocrine disrupting chemicals in a model species, the zebrafish (Danio rerio). Environ Toxico. Vol. 21, No. 4, pp: 332-337.
  19. Husoy, A.M.; Myers, M.S. and Goksoyr, A., 1996. Cellular localization of cytochrome P450 (CYPlA) induction and histology in Atlantic cod (Gadus morhua L) and European flounder (Platichthys flesus) after environmental exposure to contaminants by caging in Sarrfiorden, Norway. Aqua Toxico. Vol. 36, No. 1-2, pp: 53-74.
  20. Hwang, D.S.; Lee, K.W.; Han, J.; Park, H.G.; Lee, J.; Lee, Y.M. and Lee, J.S., 2010. Molecular characterization and expression of vitellogenin (Vg) genes from the cyclopoid copepod, Paracyclopina nana exposed to heavy metals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. Vol. 151, No. 3, pp: 360-368.
  21. Jobling, S.; Williams, R.; Johnson, A.; Taylor, A.; Gross Sorokin, M.; Nolan, M.; Tyler, C.R.; van Aerle, R.; Santos, E. and Brighty, G., 2006. Predicted exposures to steroid estrogens in U.K. rivers correlate with widespread sexual disruption in wild fish populations. Environ Health Perspect. Vol. 114, No. (Suppl 1), pp:32-39.
  22. Kim, S.; Jung, D.; Kho, Y. and Choi, K., 2014. Effects of benzophenone-3 exposure on endocrine disruption and reproduction of Japanese medaka -A two genERαtion exposure study. Aqua Toxico. Vol. 155, pp: 244-252.
  23. Kwon, B.; Ha, N.; Jung, J.; Kim, P.G.; Kho, Y.; Choi, K. and Ji, K., 2016. Effects of Barium Chloride Exposure on Hormones and Genes of the Hypothalamic-Pituitary-Gonad Axis, and Reproduction of Zebrafish (Danio rerio). Bull of Environ Contamin and Toxico. Vol. 96, No. 3, pp: 341-346.
  24. Larkin, P.; Knoebl, I. and Denslow, N.D., 2003. Differential gene expression analysis in fish exposed to endocrine disrupting compounds. Compar Biochem and Physio. Vol. 136, No. 2, pp: 149-161.
  25. Lee, J.; Park, N.Y.; Kho, Y. and Ji, K., 2018. Effects of 4 Hydroxyphenyl 4-Isoprooxyphenyl sulfone Exposure on Reproduction and Endocrine System of Zebrafish. Environ Sci & Techno. Vol. 52, No. 3, pp: 1506-1513.
  26. Liley, N.R. and Stacey, N.E., 1983. Hormones, pheromones, & reproductive behavior in fish. Fish Physio. Vol. 9, pp: 1-63.
  27. Livak, K.J. and Schmittgen, T.D., 2001. Analysis of relative gene expression data using real time quantitative PCR & the  method. Methods. Vol. 25, No. 4, pp: 402-408.
  28. McKinlay, R.; plant, J.A.; Bell, J.N.B. and Voulvoulis, N., 2008. Endocrine disrupting pesticides: Implications for risk assessment. Environmental International. Vol. 34, No. 2, pp :168-183.
  29. Mills, L. and Chichester, C., 2005. Review of evidence: are endocrine-disrupting chemicals in the aquatic environment impacting fish populations? Sci of the Total Enviro. Vol. 343, No. 1-3, pp: 1-34.
  30. Srivastava, A.K.; Mirshra, D.; Shrivastava, S.; Srivastav, S.k. and Srivastav, A.A., 2010. Acute toxicity and behavioural responses of Heteropneutes fossilis to an organophosphate insecticide, dimethoate. Inter Journal of Pharma and Bio Sci. Vol. 1, No. 4, pp: 359-363.
  31. Teng, M.; Qi, S.; Zhu, W.; Wang, Y.; Wang, D.; Dong, K. and Wang, C., 2018. Effects of the bioconcentration and parental transfer of environmentally relevant concentrations of difenoconazole on endocrine disruption in zebrafish (Danio rerio). Environ Poll. Vol. 233, pp: 208-217.
  32. Trant, J.M.; Gavasso, S.; Ackers, J.; Chung, B.C. and Place, A.R., 2001. Developmental expression of cytochrome P450 aromatase genes (CYP19a and CYP19b) in zebrafish fry (Danio rerio). Journal of Experimental Zoology Part A: Eco Gene and Physio. Vol. 290, No. 5, pp: 475-483.
  33. Trickler, W.J.; Guo, X.; Cuevas, E.; Ali, S.F.; Paule, M.G. and Kanungo, J., 2014. Ketamine attenuates cytochrome p450 aromatase gene expression and estradiol‐17β levels in zebrafish early life stages. Journal of Appli Toxico. Vol. 34, No. 5, pp:480-488.
  34. Uchida, D.; Yamashita, M.; Kitano, T. and Iguchi, T., 2004. An aromatase inhibitor or high water tempERαture induce oocyte apoptosis and depletion of P450 aromatase actiVtgy in the gonads of genetic female zebrafish during sex reversal. Compar Biochem and Physio Part A: Molecu & Inte Physio. Vol. 137, No. 1, pp: 11-20.
  35. Yu, L.; Liu, C.; Chen, Q. and Zhou, B., 2014. Endocrine disruption and reproduction impairment in zebrafish after long‐term exposure to DE‐71. Environ Toxico and Chem. Vol. 33, No. 6, pp: 1354-1362.