Genetic diversity of the Yellow ground squirrel Spermophilus fulvus (Lichtenstein, 1823) in Iran

Document Type : Genetic

Authors

1 Department of Environment, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Environmental Science, Faculty of Natural Resources, University of Tehran, Karaj, Iran

3 Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

4 Department of Environmental Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran

Abstract

 To study the genetic diversity of the Yellow ground squirrel (Spermophilus fulvus) in Iran, 79 tissue samples were collected from seven provinces (Razavi Khorasan, North Khorasan, Zanjan, Qazvin, Alborz, Hamedan and Kurdistan). Following DNAisolationandpolymerase chain reaction (PCR), genetic variation was investigated using the complete sequencingof the mitochondrial Cytochrome b (cyt b) (1140 bp). Results of Bayesian and maximum likelihood trees based on cyt b using 79 individuals showed that the Yellow ground squirrel was divided into three main mtDNA clades from eastern to western Iran. Clade IR1 included populations from eastern and northeastern Iran, along with individuals from Iran-Turkmenistan-Afghanistan borderline. Clade IR2 included populations from northeastern and western provinces of Iran (North Khorasan, Razavi Khorasan, Zanjan, and Kurdistan provinces), whereas Clade IR3 included populations from western Iran (Hamedan, Qazvin, and Alborz provinces). Our study reveals Iranian populations of the Yellow ground squirrel have undergone sudden range expansions. Based on the genetic diversity analyses, 26 unique haplotypes and 35 informative sites were detected, implying high levels of genetic and haplotype diversity. Additionally, an analysis of molecular variance (AMOVA) and fixation index (FST) confirmed a significant genetic structure among the main groups and populations. Finally, our results, based on the mitochondrial genealogy, recommend that the distinct clades of S. fulvus should be recognized as ESUs and be the focus of conservation efforts in the hope of securing the long-term persistence of the Yellow ground squirrel in Iran.

Keywords


  1. Asgharzadeh, A.; Kaboli, M.; Rajabi-Maham, H. and Naderi, M., 2019. Phylogeny and genetic structure of the Yellow ground squirrel, Spermophilus fulvus, in Iran. Mammalian Biology. Vol. 98, pp:137-145. ‏
  2. Ashrafzadeh, M.R.; Kaboli, M. and Naghavi, M.R., 2016. Mitochondrial DNA analysis of Iranian brown bears (Ursus arctos) reveals new phylogeographic lineage. Mammalian Biology. Vol.81, No.1, pp: 1-9.
  3. Ashton, K.G. and de Queiroz, A., 2001. Molecular systematics of the western rattlesnake, Crotalus viridis (Viperidae), with comments on the utility of the D-loop in phylogenetic studies of snakes. Molecular Phylogenetics and Evolution. Vol. 21, pp:176-189.
  4. Avise, J.C., 2000. Phylogeography: the history and formation of species: Harvard university press.
  5. Bataillon, T.M.; David, J.L. and Schoen, D.J., 1996. Neutral genetic markers and conservation genetics: simulated germplasm collections. Genetics. Vol. 144, No. 1, pp: 409-417.
  6. Colombo, F.; Marchisio, E.; Pizzini, A. and Cantoni, C., 2002. Identification of the goose species (Anser anser) in Italian Mortara salami by DNA sequencing and a Polymerase Chain Reaction with an original primer pair. Meat Science. Vol. 61, pp: 291-294.
  7. Davison, J.; Ho, S.Y.; Bray, S.C.; Korsten, M.; Tammeleht, E.; Hindrikson, M.; Ostbye, k.; Ostbye, E.; Lauritzen, S.E.; Austin, J.; Cooper, A. and Saarma, U., 2011. Late-Quaternary biogeographic scenarios for the brown bear (Ursus arctos), a wild mammal model species. Quaternary Science Reviews. Vol. 30, pp: 418-430. ‏
  8. Excoffier, L.; Laval, G. and Schneider, S., 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary bioinformatics. Vol. 1, pp: 47-50.
  9. Faerman, M.; Bar-Gal, G.K.; Boaretto, E.; Boeskorov, G.G.; Dokuchaev, N.E.; Ermakov, O.A.;Golenishchev, F.N.; Gubin, S.V.; Mintz, E.; Simonov, E.; Surin, V.L.; Titov, S.V.; Zanina,O.G. and Formozov, N.A., 2017. DNA analysis of a 30,000-year-old Urocitellus glacialis from northeastern Siberia reveals phylogenetic relationships between ancient and present-day arctic ground squirrels. Scientific Reports. Vol. 7, pp: 42639.
  10. Fraser, D.J. and Bernatchez, L., 2001. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Molecular Ecology. Vol. 10, pp: 2741-2752.
  11. Frankham, R.; Briscoe, D.A. and Ballou, J.D., 2002. Introduction to conservation genetics: Cambridge University Press.
  12. Fu, Y.X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. Vol. 147, No. 2, pp: 915-925.
  13. Gündüz, İ.; Jaarola, M.; Tez, C.; Yeniyurt, C.; Polly, P.D. and Searle, J.B., 2007. Multigenic and morphometric differentiation of ground squirrels (Spermophilus, Scuiridae, Rodentia) in Turkey, with a description of a new species. Molecular Phylogenetics and Evolution. Vol. 43,
    pp: 916-935.
  14. Harrison, R.G.; Bogdanowicz, S.M.; Hoffmann, R.S.; Yensen, E. and Sherman, P.W., 2003. Phylogeny and evolutionary history of the ground squirrels (Rodentia: Marmotinae). Journal of Mammalogy Evolution. Vol. 10, pp: 249-276.
  15. Helgen, K.M.; Cole, F.R.; Helgen, L.E. and Wilson, D.E., 2009. Generic revision in the Holarctic ground squirrel genus Spermophilus. Journal of Mammalogy. Vol. 90, pp: 270-305.
  16. Herkert, J.R., 1994. The effects of habitat fragmentation on midwestern grassland bird communities. Ecological applications. Vol. 4, No. 3, pp: 461-471.
  17. Herron, M.D.; Castoe, T.A. and Parkinson, C.L., 2004. Sciurid phylogeny and the paraphyly of Holarctic ground squirrels (Spermophilus). Molecular Phylogenetics and Evolution. Vol. 31, pp: 1015-1030.
  18. Hrbek, T.; Farias, I.P.; Crossa, M.; Sampaio, I.; Porto, J.I. and Meyer, A., 2005. Population genetic analysis of Arapaima gigas, one of the largest freshwater fishes of the Amazon basin: implications for its conservation. Animal Conservation. Vol. 8, pp: 297-308.
  19. IUCN. 2019. The IUCN Red List of threatened species. Version 2019-2. http://www.iucnredlist.org. Accessed 08 August 2019.
  20. Kapustina, S.Y.; Brandler, O.V. and Adiya, Y., 2015. Phylogeny of genus Spermophilus and position of Alashan ground squirrel (Spermophilus alashanicus, Büchner, 1888) on phylogenetic tree of Paleartic short-tailed ground squirrels. Molecular Biology. Vol. 49, pp: 391-396.
  21. Khalilipour, O.; Rezaei, H.R.; Alizadeh Shabani, A.; Kaboli, M. and Ashrafi, S., 2014. Genetic structure and differentiation of four populations of Afghan Pika (Ochotona rufescens) in Iran based on mitochondrial cytochrome b gene. Zoology in the Middle East. Vol. 60, pp: 288-298.
  22. Kryštufek, B.; Bryja, J. and Bužan, E.V., 2009. Mitochondrial phylogeography of the European ground squirrel, Spermophilus citellus, yields evidence on refugia for steppic taxa in the southern Balkans. Heredity. Vol. 103, pp: 129-135.
  23. Kryštufek, B. and Vohralík, V., 2012. Taxonomic revision of the Palaearctic rodents (Rodentia): Sciuridae: Xerinae 1 (Eutamias and Spermophilus). Lynx, n. s. (Praha). Vol. 43, No. 1-2, pp: 17-111.
  24. Lanfear, R.; Calcott, B.; Ho, S.Y.W. and Guindon, S., 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Phylogenetics and Evolution. Vol. 29, pp: 1695-1701.
  25. Leigh, J.W. and Bryant, D., 2015. POPART: full-feature software for haplotype network construction. Methods Ecology Evolution. Vol. 6, pp: 1110-1116.
  26. Librado, P. and Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. Vol. 25, pp: 1451-1452.
  27. McNeely, J.A.; Miller, K.R.; Reid, W.V.; Mittermeier,R.A. and Werner, T.B., 1990. Conserving the world's biological diversity: International Union for conservation of nature and natural resources.
  28. Milá, B.; McCormack, J.E.; Castañeda, G.; Wayne, R.K. and Smith, T.B., 2007. Recent postglacial range expansion drives the rapid diversification of a songbird lineage in the genus Junco. Proceedings of the Royal Society of London B: Biological Sciences. Vol. 274, pp: 2653-2660.
  29. Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A. and Minh, B.Q., 2014. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. Vol. 32, pp: 268-274. https://doi.org/10.1093/molbev/msu300.
  30. Rambaut, A. and Drummond, A.J., 2007. Tracer. v. 1.5 Available: http://beast. bio. ed. ac. uk/Tracer.
  31. Rambaut, A. and Drummond, A.J., 2012. Fig Tree: Tree Figure Drawing Tool Version 1.4.
  32. Ramírez-Soriano, A.; Ramos-Onsins, S.E.; Rozas, J.; Calafell, F. and Navarro, A., 2008. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics. Vol. 179, No. 1, pp: 555-567.
  33. Ramos-Onsins, S.E. and Rozas, J., 2002. Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution. Vol. 19, pp: 2092-2100.
  34. Ronquist, F. and Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. Vol. 19, pp: 1572-1574.
  35. Sambrook, J.; Fritsch, E.F. and Maniatis, T., 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press.
  36. Slatkin, M. and Hudson, R.R., 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics. Vol. 129, pp: 555-562.
  37. Stümpel, N.; Rajabizadeh, M.; Avcı, A.; Wüster, W. and Joger, U., 2016. Phylogeny and diversification of mountain vipers (Montivipera, Nilson et al., 2001) triggered by multiple Plio-Pleistocene refugia and high-mountain topography in the Near and Middle East. Molecular Phylogenetics and Evolution. Vol. 101, pp: 336-351.
  38. Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. Vol. 123, No. 3, pp: 585-595.
  39. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A. and Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution. Vol. 30, pp: 2725-2729.
  40. Thorington, R.W.J.; Koprowski, J.L.; Steele, M.A. and Whatton, J.F., 2012. Squirrels of the world. JHU Press.
  41. Wang, L.Y.; Ikeda, H.; Liu, T.L.; Wang, Y.J. and Liu, J.Q., 2009. Repeated range expansion and glacial endurance of Potentilla glabra in the Qinghai Tibetan Plateau. J. of Integrative Plant Biology. Vol. 51, pp: 698-706.
  42. Wink, M. and Heidrich, P., 2000. Molecular systematics of owls (Strigiformes) based on DNA-sequences of the mitochondrial cytochrome b gene. Raptors at Risk’. (Eds Chancellor, R.D. and Meyburg, B.U.,). pp: 819-828.
  43. Xia, X. and Lemey, P., 2009. Assessing substitution saturation with DAMBE. phylogenetic Handb. a Pract. approach to DNA and protein phylogeny. Vol. 2, pp: 615-630.
  44. Xia, X. and Xie, Z., 2001. DAMBE: software package for data analysis in molecular biology and evolution. Journal of heredity. Vol. 92, pp: 371-373.
  45. Zuckerberg, B.; Carling, M. and Dor, R., 2014. Differential relationships between habitat fragmentation and within-population genetic diversity of three forest-dwelling birds.  bioRxiv, 004903.