اثرات نانوذرات نقره بر خصوصیات کمی و کیفی اسپرم بلدرچین ژاپنی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم دامی، واحد کاشمر، دانشگاه آزاد اسلامی، کاشمر، ایران

چکیده

در تحقیق حاضر اثرات نانوذرات نقره بر خصوصیات کمی و کیفی اسپرم در بلدرچین ژاپنی بررسی گردید. اسپرم در سوسپانسیون حاوی غلظت‌های 0، 0/75، 0/125 و 0/250 قسمت در میلیون نانوذرات نقره رقیق شد. زنده‌ مانی با استفاده از رنگ‌ آمیزی ائوزین-نیگروزین تعیین شد. سلامت آکروزوم اسپرم بعد از 40 دقیقه تیمار با نانوذرات نقره در دمای 39 درجه سانتی ­گراد با محلول فرمالین- سیترات ارزیابی شدند. غظت اسپرم، جنبایی و جنبایی پیش ­رونده اسپرم اندازه­ گیری گردیدند. افزودن نانوذرات نقره به منی بلدرچین در سطوح 0/125 و 0/250 قسمت در میلیون درصد جنبایی و جنبایی پیش ­رونده اسپرم را به ­طور معنی­ داری کاهش داد. زنده­ مانی اسپرم در سطح  0/125 قسمت در میلیون کاهش یافت (0/01>p ). سلامت آکروزوم در تیمار 0/125 نانوذرات نقره کاهش یافت (0/05>p ). در تیمارهای حاوی 0/125 و 0/250 قسمت در میلیون، درصد اسپرم با آکروزوم سا لم (0/05>p ) در مقایسه با شاهد کاهش معنی‌ داری یافت (0/05>p ). ممکن است نانوذرات قادر به تخریب غشای آکروزومی باشند. نتایج این تحقیق نشان می دهد که نانوذرات نقره با تأثیر بر عملکرد اسپرم ممکن است اثرات سمی روی اسپرم داشته باشند و سبب مرگ اسپرم شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of silver nanoparticles on quantity and quality characteristics of Japanese quail sperm

نویسندگان [English]

  • Saeid Taghipour
  • Reza Vakili
Department of Animal Science, Kashmar Branch, Islamic Azad University, Kashmar, Iran
چکیده [English]

The present research, the effects of silver nanoparticles on the quantitative and qualitative characteristics of sperm in Japanese quail were investigated. The sperm was diluted in medium containing 0, 0.75, 0.125 and 0.250 ppm of silver nanoparticle. Sperm viability, Membrane integrity were assessed using the eosin-nigrosine test. Sperm acrosome health was evaluated after 40 minutes of treatment with silver nanoparticles at 39 ℃ by Formalin-citrate solution. Sperm concentration, motility, and progressive sperm motility were measured. Addition of silver nanoparticles to the semen of quail significantly decreased sperm motility at 0.25 and 0.250 ppm. Addition of silver nanoparticles in 0.125 and 0.250 ppm levels to quail semen significantly decreased motility and progressive motility(p < 0.05). Viability was significantly reduced in 0.125 and 0.250 ppm AgNPs. The acrosome integrity was significantly decreased at 0.125 silver nanoparticles (p < 0.05). The percentage of spermatozoa with an intact membrane (p < 0.05) were significantly decteased in treatments containg of 0.125 and 0.250 ppm silver nanoparticles in comparison to control group. The nanoparticles may be able to damage the acrosomal membrane. The results of this study suggest that silver nanoparticles may have toxic effects on sperm and may cause sperm death.

کلیدواژه‌ها [English]

  • Nanotechnology
  • Silver nanoparticles
  • Sperm
  • Japanese quail
  1. Ahamed, M.; Karns, M.; Goodson, M.; Rowe, J.; Hussain, S.M.; Schlager, J.J. and Hong, Y., 2008. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology. Vol. 233, pp: 404-410.
  2. Arora,S.;Jain,J.;Rajwade,J.M.andPaknikar, K.M.,2008. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicology Letters. Vol. 179, pp: 93-100.
  3. Arora, S.; Rajwade, J.M. and Paknikar, K.M., 2011. Nanotoxicology and in vitro Studies: The Need of the Hour. Toxicology and applied pharmacology. Vol. 258, pp: 151-165.
  4. Asare, N.; Instanes, C.W.; Sandberg, J.; Refsnes, M.; Schwarze, P.; Kruszewski, M. and Brunborg, G., 2011. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology. Vol. 291, pp:65-72.
  5. AshaRani,P.V.;Mun,G.L.K.;Hande,M.P.andValiyaveettil, S., 2009. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano. Vol. 3, pp: 279-290.
  6. AshaRani, P.V.; Hande, M.P. and Valiyaveettil, S., 2009. Anti-proliferative activity of silver nanoparticles. BMC Cell Biology. Vol. 10, pp: 65.
  7. Bai, Y.; Zhang, Y.; Zhang, J.; Mu, Q.; Zhang, W.; Butch, E.R.; Snyder, S.E. and Yan, B., 2010. Repeated carbon nanotube administrations in male mice cause reversible testis damage without affecting fertility. Nature Nanotechnology. Vol. 5, pp: 683-689.
  8. Birkhead, T.R.; Sheldon, B.C. and Fletcher, F., 1994. A comparative study of sperm-egg interactions in birds. Journal of Reproduction and fertility. Vol. 101, pp: 353-361.
  9. Braydich-Stolle, L.; Hussain, S.M.; Schlager, J.J. and Hofmann, M.C., 2005. In Vitro Cytotoxicity of Nano particles in Mammalian Germline Stem Cells. Journal of Toxicology Science. Vol. 88, pp: 412-419.
  10. Carlson, C.; Hussain, S.M.; Schrand, A.M.; Braydich stolle, L.K.; Hess, K.L.; Jones, R.L. and Schlager, J.J.,2008. Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species. The Journal of Physical Chemistry B. Vol. 112, pp: 13608-13619.
  11. Chelmonska, B.; Jerysz, A.; Łukaszewicz, E.; Kowalczyk, A. and Malecki, I., 2008. Semen collection from Japanese quail (Coturnix japonica) using a teaser female. Turkish Journal of Veterinary Animal Sciences. Vol. 32, pp: 19-24
  12. De, M.; Ghosh, P.S.  and Rotello, V.M., 2008. Applications of Nanoparticles in Biology. Advanced Materials. Vol. 20, pp: 4225-4241.
  13. El-Gendy, E.A.; Gad, A.Y. and Mostageer, A., 2007. Sperm-mediated gene transfers in poultry. 1. The relationship with cock sperm viability. Arab Journal of Biotechnology. Vol. 10, pp: 1-12.
  14. Gopinath, P.; Gogoi, S.K.; Sanpui, P.; Paul, A.; chattopadhyay, A. and Ghosh, S.S., 2010. Signaling gene cascade in silver nanoparticle induced apoptosis. Colloids and Surfaces.: Biointerfaces. Vol. 77, pp: 240-245.
  15. Jamieson, B.G.M., 2011. Reproductive Biology and phylogeny of Birds. Taylor and Francis group. pp: 83-87.
  16. Hsin, Y.H.; Chen, C.F.; Huang, S.; Shih, T.S.; Lai, P.S. and Chueh, P.J., 2008. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicology Letters. Vol. 179, pp: 130-139.
  17. Hussain, SM.; Hess, K.L.; Gearhart, J.M.; Geiss, K.T.  and Schlager, J.J., 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro. Vol. 19, pp: 975-983.
  18. Kadar, E.; Tarran, G.N.; Jha, A.N. and Al-Subiai, S.N., 2011. Stabilization of engineered Zero-Valent Nanoiron with Na-Acrylic Copolymer Enhances Spermiotoxicity. Environmental science & technology. Vol. 45, pp: 3245-3251.
  19. Larese, F.F.; Agostin, F.D.; Crosera, M.; Adami, G.; Renzi, N.; Bovenzi, M. and Maina, G., 2009. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology. Vol. 255, pp: 33-37.
  20. Li-guang, S.; Ru-jie, Y.; Wen-bin, Y.; Wen-juang, X.; Chun-xiang, Z.; You-she, R.; Lei, S. and Fu-lin, L., 2010. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats. Animal reproduction science. Vol. 118, pp: 248-254.
  21. Lukaszewicz, E.; Jerysz, A.; Partyka, A. and Siudzińska, A., 2008. Efficacy of evaluation of rooster sperm morphology usingdifferent staining methods. Research in Veterinary Science. Vol. 85, pp: 583-588.
  22. Makhluf, S.B.D.; Arnon, R.; Patra,C.R.; Mukhopadhyay, D.; Gedanken, A.; Mukherjee, P. and Breitbart, H., 2008. Labeling of Sperm Cells via the Spontaneous Penetration of Eu3+ Ions as Nanoparticles Complexed with PVA or PVP. Journal of Physical Chemistry. Vol. 112, pp: 12801-12807.
  23. Miura, N. and Shinohara, Y., 2009. Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochemical and Biophysical Research Communications. Vol. 390, pp: 733-737.
  24. Park, E.J.; Yi, J.; Kim, Y.; Choi, K. and Park, K., 2010. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in Vitro. Vol. 24, pp: 872-878.
  25. Pawar, K. and Kaul, G., 2012. Toxicity of titanium oxide nanoparticles causes functionality and DNA damage in buffalo (Bubalus bubalis) sperm in vitro. Toxicology and Industrial Health. Vol. 30, No. 6, pp: 520-533.
  26. Quinn, J.R.; Lavoie, E.T. and Ottinger, M.A., 2007. Reproductive toxicity of trenbolone acetate in embryonically exposed Japanese quail. Chemosphere. Vol. 66, pp: 1191-1196.
  27. Rahman, M.F.; Wang, J.; Patterson, T.A.; Saini, U.T.; Robinson, B.L.; Newport, G.D.; Murdock, R.C.; Schlager, J.J.; Hussain, S.M. and Ali, S.F., 2009. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicology Letters. Vol. 187, pp: 15-21.
  28. Samberg, M.E.; Oldenburg, S.J. and Monteiro-Riviere, N.A., 2010. Evaluation of Silver Nanoparticle Toxicity in Skin in Vivo and Keratinocytes in Vitro. Environmental Health Perspectives. Vol. 118, pp: 407-413.
  29. Santiago-Moreno, J.; Castano, C.; Coloma, M.A.; Gomez Brunet, A.; Toledano-Diaz, A.; Lopez-Sebastian, A. and Campo, J.L., 2009. Use of the hypo-osmotic swelling test and aniline blue staining to improve the evaluation of seasonal sperm variation in native Spanish free-range poultry. Poultry Science. Vol. 88, pp: 2661-2669.
  30. Shit, N.; Singh, R.P.; Sastry, K.V.H.; Mohan, J.; Pandey, N.; and Moudgal, R.P., 2010. Cloacal Gland size significantly alters semen production, sperm avtivities and fertility in different lines of Japanese quail (Coturnix coturnix japonica). Asian J of poultry science. Vol. 4, pp: 190-197.
  31. Taylor, U.; Barchanski, A.; Kues, W.; Barcikowski, S. and Rath, D., 2012. Impact of Metal Nanoparticles on Germ Cell Viability and Functionality. Reproduction in Domestic Animals. Vol. 47, pp: 359-368.
  32. Yang, H.; Liu, C.; Yang, D.; Zhang, H. and Xia, Z., 2009. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. Journal of Applied Toxicology. Vol. 29, pp: 69-78.