Effect of Sodium Alginate on Non-Specific Immune Parameters and Resistance to Ozone Toxicity in Rainbow Trout Fingerlings (Oncorhynchus mykiss)

Document Type : (original research)

Authors

1 Department of Fisheries, Faculty of Natural Resources, Isfahan University of Technology, Isfahan, Iran

2 Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran

3 Research Institute for Nanotecnology and Advanced Materials, Isfahan University of Technology, Isfahan, Iran

Abstract

Sodium alginate, an anionic polysaccharide, is now considered a new prebiotic due to its immune-stimulating and growth-promoting properties. This study has investigated the effects of sodium alginate on non-specific immune system parameters and growth performance in the rainbow trout fingerling. For these purposes, 90 rainbow trout (3±0.3 g) were fed 3% of body weight with a diet that contain 2.5 g/kg sodium alginate for 45 days. The growth factors and non-specific immune system parameters includes lysozyme, Alternative complement activity (ACH50), bactericidal and respiratory burst activity were investigated in days 15 and 45. At the end of the rearing period, treatments exposed to the toxic dose of ozone. The results showed that the fish feed with diet contain sodium alginate had not significant differences with control treatment on body weight gain, food conversion factor, specific growth rate, condition factor (P>0.05) but there was significant differences in final weight gain (p < 0.05). On both days, 15 and 45, sodium alginate caused the significant increase in lysozyme activity, alternative complement activity, respiratory burst activity and bactericidal of rainbow trout compared to the control treatment (p < 0.05). Furthermore, when the treatments exposed to toxic dose of the ozone, sodium alginate increased relative percent survival compared to the control treatment. According to the results, using of the sodium alginate in diet improved the performance of the  immune system, increased the fish's resistance to the toxic level of ozone and finally increased the relative percent survival in rainbow trout fingerling.

Keywords


  1. Agüero, L.; Zaldivar-Silva, D.; Pe˜na, L. and Dias, M., 2017. Alginate microparticles as oral colon drug delivery device: A review. Carbohydrate Polymers. Vol. 168, pp: 32-43.
  2. Akhter, N.; Wu, B.; Memon, A.M. and Mohsin, M., 2015. Probiotics and prebiotics associated with aquaculture: a review. Fish and Shellfish Immunology. Vol. 45, No. 2, pp: 733-741.
  3. Ashouri, G.; Soofiani, N.M.; Hoseinifar, S.H.; Jalali, S.A.H.; Morshedi, V.; Van Doan, H. and Mozanzadeh, M.T., 2018. Combined effects of dietary low molecular weight sodium alginate and Pediococcus acidilactici MA18/5M on growth performance, haematological and innate immune responses of Asian sea bass (Lates calcalifer) juveniles. Fish and Shellfish Immunology. Vol. 79, pp: 34-41.
  4. Bagni, M.; Romano, N.; Finoia, M.G.; Abelli, L.; Scapigliati, G.; Tiscar, P.G.; Sarti, M. and Marino, G., 2005. Short-and long-term effects of a dietary yeast
    β-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax). Fish and Shellfish Immunology. Vol. 18, No. 4, pp: 311-325.
  5. Bobadilla, A.S.; Llopis, S.P.; Requeni, P.G.; Médale, F.; Kaushik, S. and Sánchez, J.P., 2005. Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture. Vol. 249, No. 4, pp: 387- 400.
  6. Bullock, G.L.; Summerfelt, S.T.; Noble, A.C.; Weber, A.L.; Durant, M.D. and Hankins, J.A., 1997. Ozonation of a recirculating rainbow trout culture system I. Effects on bacterial gill disease and heterotrophic bacteria. Aquaculture. Vol. 158, pp: 43-55.
  7. Bron, P.A.; Van Baarlen, P. and Kleerebezem, M., 2012. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nature Reviews Microbiology. Vol. 10, No. 1, pp: 66-69.
  8. Cheng, A.C.; Tu, C.W.; Chen, Y.Y.; Nan, F.H. and Chen, J.C., 2007. The immunostimulatory effects of sodium alginate and iota-carrageenan on orange-spotted grouper Epinephelus coicoides and its resistance against Vibrio alginolyticus. Fish and Shellfish Immunology. Vol. 22, pp: 197-205.
  9. Cheng, A.C.; Chen, Y.Y. and Chen, J.C., 2008. Dietary administration of sodium alginate and k-carrageenan enhances the innate immune response of brown-marbled grouper Epinephelus fuscoguttatus and its resistance against Vibrio alginolyticus. Veterinary Immunology and Immunopathology. Vol. 121, pp: 206-215.
  10. Cheng, W.; Liu, C.H.; Kuo, C.M. and Chen, J.C., 2005. Dietary administration of sodium alginate enhances the immune ability of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish and Shellfish Immunology. Vol. 18, pp: 1-12.
  11. Cheng, W.; Liu, C.H.; Yeh, S.T. and Chen, J.C., 2004. The immune stimulatory effect of sodium alginate on the white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish and Shellfish Immunology. Vol. 17, pp: 41-51.
  12. Cheng, W. and Yu, J.S., 2013. Effects of the dietary administration of sodium alginate on the immune responses and disease resistance of Taiwan abalone, Haliotis diversicolor supertexta. Fish & Shellfish Immunology. Vol. 34, pp: 902-908.
  13. Chiu, S.T.; Tsai, R.T.; Hsu, J.P.; Liu, C.H. and Cheng, W., 2008. Dietary sodium alginate administration to enhance the non-specific immune responses, and disease resistance of the juvenile grouper Epinephelus fuscoguttatus. Aquaculture. Vol. 277, No. 2, pp: 66-72.
  14. Corrêa‐Oliveira, R., Fachi, J.L., Vieira, A., Sato, F.T. and Vinolo, M.A.R., 2016. Regulation of immune cell function by short‐chain fatty acids. Clinical and Translational immunology. Vol. 5, No. 4, pp: 73.
  15. Ellis, A.E., 1990. Lysozyme assays. Techniques in Fish Immunology. Vol. 1, pp: 101-103.
  16. Kajita, Y.; Sakai, M.; Atsuta, S. and Kobayashi, M., 1990. The immunomodulatory effects of levamisole on rainbow trout, Oncorhynchus mykiss. Fish Pathology. Vol. 25, No. 2, pp: 93-98.
  17. Kapetanovic, D.; Kurtovic, B. and Teskeredzic, E., 2005. Difference in bacterial population in raibow trout (Oncorhynchus mykiss, Walbaum) fry after transfer from incubator to pools. Food Technology Biotechnology. Vol. 48, pp: 189-193.
  18. Kelishomi, Z.H.; Goliaei, B.; Mahdavi, H.; Nikoofar, A.; Rahimi, M.; MoosaviMovvahedi, A.A.; Mamashli, F. and Bigdeli, B., 2016. Antioxidant activity of low molecular weight alginate produced by thermal treatment. Food Chemistry. Vol. 196, pp: 897-902.
  19. Langlais, B.; Recknow, D.A. and Brink, D.R., 1991. Ozone in water treatment: Application and engineering. Lewis Pablishers. 569 p.
  20. Milla, S.; Mathieu, C.; Wang, N.; Lambert, S.; Nadzialek, S.; Massart, S.; Henrotte, E.; Douxfils, J.; Mélard, C.; Mandiki, S.N.M. and Kestemont, P., 2010. Spleen immune status is affected after acute handling stress but not regulated by cortisol in Eurasian perch, Perca fluviatilis. Fish and Shellfish Immunology. Vol. 28, No. 6, pp: 931-941.
  21. Roberfroid, M., 2007. Prebiotics: the concept revisited. Journal of Nutrition. Vol. 137, No. 3, pp: 830-837.
  22. Sado, R.Y.; Bicudo, Á.J.D.A. and Cyrino, J.E.P., 2008. Feeding dietary mannan oligosaccharides to juvenile Nile tilapia, Oreochromis niloticus, has no effect on hematological parameters and showed decreased feed consumption. Journal of the World Aquaculture Society. Vol. 39, No. 6, pp: 821-826.
  23. Sahoo, P.K.; Kumari, J. and Mishra, B.K., 2005. Non specific immune responses in juveniles of Indian major carps.AppliedIchthyology. Vol. 21, No. 2, pp: 151-155.
  24. Salze, G.; McLean, E.; Schwarz, M.H. and Craig, S.R., 2008. Dietary mannan oligosaccharide enhances salinity tolerance and gut development of larval cobia. Aquaculture. Vol. 274, pp: 148-152.
  25. Secombes, C.J., 1990. Isolation of salmonid macrophages and analysis of their killing activity. Techniques in Fish Immunology. Vol. 1, pp: 137-154­.
  26. Shan, X.; Xiao, Z.; Huang, W. and Dou, S., 2008. Effects of photoperiod on growth, mortality and digestive enzymes in miiuy croaker larvae and juveniles. Aquaculture. Vol. 281, No. 4, pp: 70-76.
  27. Song, S.K.; Beck, B.R.; Kim, D.; Park, J.; Kim, J.; Kim, H.D. and Ringø, E., 2014. Prebiotics as immunostimulants in aquaculture: a review. Fish & Shellfish Immunology. Vol. 40, No. 1, pp: 40-48.
  28. Sun, Y.Z.; Yang, H.L.; Ma, R.L. and Lin, W.Y., 2010. Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish and Shellfish Immunology. Vol. 29, No. 5, pp: 803-809.
  29. Van Doan, H.; Tapingkae, W.; Moonmanee, T. and Seepai, A., 2016. Effects of low molecular weight sodium alginate on growth performance, immunity, and disease resistance of tilapia, Oreochromis niloticus. Fish & Shellfish Immunology. Vol. 55, pp: 186-194.
  30. Van Doan, H.; Hoseinifar, S.H.; Tapingkae, W.; Tongsiri, S. and Khamtavee, P., 2016. Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactobacillus plantarum in Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology. Vol. 58, pp: 678-685.
  31. Van Doan, H.; Hoseinifar, S.H.; Tapingkae, W. and Khamtavee, P., 2017. The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae and growth performance in Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology. Vol. 62, pp: 139-146.
  32. Yadav, M. and Schorey, J.S., 2006. The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood. Vol. 108, No. 9, pp: 3168-3175.
  33. Yano, T., 1996. The nonspecific immune system: humoral defense. The Fish Immune System: Organism, Pathogen & Environment. Vol. 1, pp 105-157.
  34. Yeh, S.P.; Chang, C.A.; Chang, C.Y.; Liu, C.H. and Cheng, W., 2008. Dietary sodium alginate administration affects fingerling growth and resistance to Streptococcus sp. and iridovirus and juvenile non-specific immune responses of the orange-spotted grouper (Epinephelus coiodes). Fish and Shellfish Immunology. Vol. 25, No. 2, pp: 19-27.