Investigation of bioavailability of zinc oxide nanoparticles by Maytilaster lineatus and Dressina poly morpha bivalves in short term

Document Type : (original research)

Authors

1 Department of Physics, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran

2 Department of Environment, Faculty of Engineering and Agriculture, Arak Branch, Islamic Azad University, Arak, Iran

Abstract

 In this study, the direct absorption of zinc oxide nanoparticles by M. linearatus and D. polymorpha was investigated over a short period of 96 hours. Sixty D. polymorpha legs with a range of 2.53±0.85 cm and sixty M. linearatus with a range of 2.7±0.5 cm was taken from the natural environment. The nanoparticles were spread using an ultrasonic device at 400 rpm. In order to phase together water reservoirs with nanoparticle solution by homogenizer device with 14000 rpm was used and Treatments were prepared at concentrations of 0.25, 25 and 50 ppm. The accumulation of nanoparticles in bivalve tissue mass with an ICP device and the distribution of nanoparticles in bivalve reservoirs were measured by DLS test. The results of ICP showed the highest accumulation of nanoparticles in bilayer tissue mass at the highest exposure concentration (p < 0.05). The lowest uptake was observed at the lowest exposure concentration (p < 0.05) compared to other treatments. D. polymorpha bivalve showed higher uptake ability than the bivalve M. lineatus during the exposure period. The DLS test results showed that the particles were in the range of 10-110 nm in size, confirming the non-segregation and homogeneity of the nanoparticles in the tanks. Both bivalve species are suggested as very good indicators for monitoring the effects of zinc oxide nanoparticles in the aquatic ecosystem.

Keywords


  1. Abel, P.D., 1976. Effects of some pollutants on the filtration rate of Mytilus. Marine pollution bulletine. Vol. 7, No. 12, pp: 228-231
  2. Andujar, P.; Simon-Deckers, A.; Galateau-Sallé, F.; Fayard, B.; Beaune, G.; Clin, B. and Lanone, S., 2014. Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders. Particle and Fiber Toxicology. Vol. 11, No. 1, pp: 1-13.
  3. Barnett, B.P.; Arepally, A.; Karmarkar, P.V.; Qian, D.; Gilson, W.D.; Walczak, P. and Bulte, A., 2007. Magnetic resonance guided, real time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nature medicine. Vol. 13, No. 8, pp: 986-991.
  4. Cashike, J.A. and Ward, J.V., 1995. Nitrate (NO3–N) toxicity to aquatic life: a proposal of safe concentrations for two species of Nearctic freshwater invertebrates. Chemosphere. Vol. 31, pp: 3211-3216.
  5. Fukunaga, A. and Anderson, M.J., 2011. Bioaccumulation of copper, lead, zinc by the bivalve Macomona liliana and Austrovenus stutchburyi. Journal of experimental marine biology and ecology. Vol. 396, pp: 244-252.
  6. Gerhard, A., 1993. Review of impact of heavy metals on stream invertebrates with special emphasis on acid conditions. Water, air, and soil pollution. Vol. 66, No. 3, pp: 289-314.
  7. Golovanova, I.L. and Frolova, T.V., 2005. Influence of copper, zinc and cadmium upon carbohydrase activities in aquatic invertebrates. Biologica Vnutrennih. Vol. 4, pp: 73-83.
  8. Hakanson, L., 1984. Metals in fish and sediment from the river kolbacksan water system, Sweden. Archive for hydrobiology. Vol. 101, pp: 373-400.
  9. Kachynski, A.V.; Kuzmin, A.N.; Nyk, M.; Roy, I. and Prasad, P.N., 2008. Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine. The Journal of Physical Chemistry. Vol. 112, No. 29, pp: 10721-10724.
  10. Luoma, S.N.; Tyler, C.R.; Fabrega, L.; Galloway, T.S. and Lead, J.R., 2011. Silver nanoparticles. Behavior and effects in the aquatic environment. Environment international. Vol. 37, No. 2, pp: 517-531.
  11. Martins, J.; Oliva, T.L. and Vasconcelos, V., 2007. Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environ Int. Vol. 33, No. 3, pp: 414-425.
  12. Moezzi, F.; Javanshir, A.; Eagderi, S.; Pourbagher, H. and Sallaki, M., 2013. Evaluation of bivalve clearance (CR) as a physiological indicator of heavy metal toxicity in freshwater mussel, Anodonta cygnea (Linea, 1876). Scientific journal of animal sciences. Vol. 2, No. 4, pp: 89-94.
  13. Moore, M.N., 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment. Environment International. Vol. 32, No. 8, pp: 967-976.
  14. Shi, D. and Wang, W.X., 2004. Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu and Zn. Environmental pollution. Vol. 132, pp: 265-277.
  15. Viarengo, A.; Zinicchi, G.; Moore, M.N. and Orunesu, M., 1981. Accumulation and detoxification of copper by the mussel Mytilus galloprovincialis Lam: a study of the subcellular distribution in the digestive gland cells. Aquatic toxicology. Vol. 1, pp: 147-157.
  16. Wei, H. and Wang, E., 2008. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Analytical chemistry. Vol. 80, No. 6, pp: 2250-2254.