طراحی سازه ژنی ترکیبی جهت تولید نوترکیب باکتریوسین لاتروسپورولین و آنالیز بیوانفورماتیکی پیش ساز پروتئینی با هدف بررسی نقش انتهای آمینی دمین 2SH

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه شیراز، شیراز، ایران

2 گروه زیست شناسی، دانشکده علوم، دانشگاه شیراز، شیراز، ایران

چکیده

باکتریوسین­ ها پپتیدهای تولید شده توسط باکتری ­ها می­ باشند که فعالیت ضدمیکروبی این پپتیدها بر علیه باکتری ­ها و قارچ­ ها شناخته شده است. به­  منظور تولید مقادیر بالای باکتریوسین با استفاده از فناوری DNA نوترکیب و نیاز به خنثی کردن اثر سمی پپتید و تولید فرم محلول پروتئین می ­توان از برخی پپتیدها که به ­عنوان چاپرون ­ها عمل می ­کنند، استفاده نمود. لاتروسپورولین یک باکتریوسین 49 اسیدآمینه ­ای می ­باشد که به ­طور طبیعی از باکتری 9-Brevibacillus laterosporus GI ترشح می­ شود. در مطالعه حاضر، برای اولین بار از انتهای آمینی دمین 2SH به ­عنوان قطعه پپتیدی کمکی جهت تولید نوترکیب باکتریوسین لاتروسپورولین استفاده شد. در این مطالعه سازه ژنی ترکیبی به­ صورت پیش­ ساز پروتئینی حاوی دنباله هیستیدینی، انتهای آمینی دمین 2SH (2N-SH)، جایگاه برش پروتئاز انتروکیناز و در نهایت پپتید لاتروسپورولین طراحی گردید و به ­کمک آنالیزهای بیوانفورماتیکی اثر دمین 2N-SH بر حلالیت و سطوح آب گریز پروتئین هدف مطالعه شد. نتایج نشان داد دمین 2N-SH با دارا بودن سطوح مناسب آب گریز می­ تواند به ­عنوان یک چاپرون مناسب، مانع از مجتمع شدن و به­ هم ریختگی ساختاری غیرقابل برگشت باکتریوسین لاتروسپورولین گردد. به ­علاوه آنالیزهای انجام شده نشان داد امکان بیان پروتئین هدف با تاخوردگی مناسب در شرایط آزمایشگاهی وجود دارد. مطالعه حاضر نشان داد دمین 2N-SH می ­تواند به ­عنوان یک گزینه مناسب جهت تولید نوترکیب انواع باکتریوسین ­ها در باکتریاشریشیا کلی عمل نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Design of a fusion gene construct for production of recombinant laterosporulin bacteriocin and bioinformatic analysis for assessing the role of the amino-terminal SH2 domain

نویسندگان [English]

  • Simin Salehzadeh 1
  • Mohammad Tabatabaei 1
  • Abdollah Derakhshandeh 1
  • Hamid reza Karbalaei Heidary 2
1 Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
2 Department of Biology, Faculty of Science, Shiraz University, Shiraz, Iran
چکیده [English]

Bacteriocins are peptides produced by bacteria that are known for their antimicrobial activity against bacteria and fungi. Some chaperone peptides can be probably applied to neutralize the toxic effect of the peptide and produce a soluble form of the protein, as well as to provide high amounts of bacteriocin using recombinant DNA technology. Laterosporulin is described as a 49 amino acid bacteriocin that is naturally secreted from Brevibacillus laterosporus GI-9. In the present study, for the first time, the amine region of the SH2 protein was used to construct a fusion protein for the production of recombinant laterosporulin. In the current study, a fusion gene construct was designed containing the histidine sequence, the SH2 domain, the enterokinase cleavage site, and the laterosporulin peptide. The findings demonstrated that N-SH2 with suitable hydrophobic surfaces can be capable of preventing the aggregation and irreversible structural disruption of bacteriocin laterosporulin as a suitable chaperone. Furthermore, our analysis raised the possibility that target peptide can be expressed with appropriate folding in vitro. The present study revealed that the N-SH2 peptide region could be considered as a suitable alternative for the production of recombinant bacteriocins in Escherichia coli.

کلیدواژه‌ها [English]

  • Laterosporulin
  • amino-terminal SH2
  • Recombinant Production
  • Bioinformatics
  1. Ahmad, S.; Banville, D.; Zhao, Z.; Fischer, E.H. and Shen, S.H., 1993. A widely expressed human protein-tyrosine phosphatase containing src homology 2 domains. Proceedings of the National Academy of Sciences. Vol. 90, No. 6, pp: 2197-2201.
  2. Chatterjee, D.K. and Esposito, D., 2006. Enhanced soluble protein expression using two new fusion tags. Protein expression and purification. Vol. 46, No. 1, pp: 122-129.
  3. Cotter, P.D.; Hill, C. and Ross, R.P., 2005. Food microbiology: bacteriocins: developing innate immunity for food. Nature Reviews Microbiology. Vol. 3, No. 10, pp: 777.
  4. Demain, A.L. and Vaishnav, P., 2009. Production of recombinant proteins by microbes and higher organisms. Biotechnology advances. Vol. 27, No. 3, pp: 297-306.
  5. Dyson, M.R.; Shadbolt, S.P.; Vincent, K.J.; Perera, R.L. and McCafferty, J., 2004. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC biotechnology. Vol. 4, No. 1, pp: 32.
  6. Esposito, D. and Chatterjee, D.K., 2006. Enhancement of soluble protein expression through the use of fusion tags. Current opinion in biotechnology. Vol. 17, No. 4, pp: 353-358.
  7. Fairlie, W.D.; Uboldi, A.D.; De Souza, D.P.; Hemmings, G.J.; Nicola, N.A. and Baca, M., 2002. A fusion protein system for the recombinant production of short disulfide containing peptides. Protein expression and purification. Vol. 26, No. 1, pp: 171-178.
  8. Fimland, G.; Blingsmo, O.R.; Sletten, K.; Jung, G.; Nes, I.F. and Nissen-Meyer, J., 1996. New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: The C-terminal region is important for determining specificity. Appl. Environ. Microbiol. Vol. 62, No. 9, pp: 3313-3318.
  9. Fontana, M.B.C.; de Bastos, M.D.C.F. and Brandelli, A., 2006. Bacteriocins Pep5 and epidermin inhibit Staphylococcus epidermidis adhesion to catheters. Current microbiology. Vol. 52, No. 5, pp: 350-353.
  10. Fox, J.D.; Kapust, R.B. and Waugh, D.S., 2001. Single amino acid substitutions on the surface of Escherichia coli maltose‐binding protein can have a profound impact on the solubility of fusion proteins. Protein Science. Vol. 10, No. 3, pp: 622-630.
  11. Guyonnet, D.; Fremaux, C.; Cenatiempo, Y. and Berjeaud, J. M., 2000. Method for rapid purification of class IIa bacteriocins and comparison of their activities. Appl. Environ. Microbiol. Vol. 66, No. 4, pp: 1744-1748.
  12. Hebditch, M.; Carballo-Amador, M.A.; Charonis, S.; Curtis, R. and Warwicker, J., 2017. Protein–Sol: a web tool for predicting protein solubility from sequence. Bioinformatics. Vol. 33, No. 1), pp: 3098-3100.
  13. Hebditch, M. and Warwicker, J., 2019. Web-based display of protein surface and pH-dependent properties for assessing the developability of biotherapeutics. Scientific reports. Vol. 9, No. 1, pp: 1969.
  14. Jack, R.W.; Tagg, J.R. and Ray, B., 1995. Bacteriocins of gram-positive bacteria. Microbiol. Mol. Biol. Rev. Vol. 59, No. 2, pp: 171-200.
  15. James, R.; Lazdunski, C. and Pattus, F., 2013. Bacteriocins, microcins and lantibiotics (Vol. 65). Springer Science & Business Media.
  16. Jana, S. and Deb, J.K., 2005. Retracted Article: Strategies for efficient production of heterologous proteins in Escherichia coli. Applied microbiology and biotechnology. Vol. 67, No. 3, pp: 289-298.
  17. Kleerebezem, M.; Beerthuyzen, M.M.; Vaughan, E.E.; De Vos, W.M. and Kuipers, O.P., 1997. Controlled gene expression systems for lactic acid bacteria: transferable nisin inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus sp. Appl. Environ. Microbiol. Vol. 63, No. 11, pp: 4581-4584
  18. Kolaj, O.; Spada, S.; Robin, S. and Wall, J.G., 2009. Use of folding modulators to improve heterologous protein production in Escherichia coli. Microbial cell factories. Vol. 8, No. 1, pp: 9.
  19. Laskowski, R.A.; MacArthur, M.W.; Moss, D.S. and Thornton, J.M., 1993. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of applied crystallography. Vol. 26, No. 2, pp: 283-291.
  20. Li, C.; Haug, T.; Styrvold, O.B.; Jørgensen, T.Ø. and Stensvåg, K., 2008. Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Developmental and Comparative Immunology. Vol. 32, No. 12, pp: 1430-1440.
  21. Li, J.F.; Zhang, J.; Zhang, Z.; Kang, C.T. and Zhang, S. Q., 2011. SUMO mediating fusion expression of antimicrobial peptide CM4 from two joined genes in Escherichia coli. Current microbiology. Vol. 62, No. 1, pp: 296-300.
  22. Malhotra, A., 2009. Tagging for protein expression. In Methods in enzymology. Vol. 463, pp: 239-258.
  23. Mayer, B.J., 2017. What Have We Learned from SH2 Domains? In SH2 Domains. Humana Press, New York, NY. pp: 37-43.
  24. McAuliffe, O.; Ross, R.P. and Hill, C., 2001. Lantibiotics: structure, biosynthesis and mode of action. FEMS microbiology reviews. Vol. 25, No. 3, pp: 285-308.
  25. McCoy, J. and La Ville, E., 1997. Expression and purification of thioredoxin fusion proteins. Current protocols in protein science. Vol. 10, No. 1, pp: 6-7.
  26. Miller, K.W.; Schamber, R.; Osmanagaoglu, O. and Ray, B., 1998. Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity. Appl. Environ. Microbiol. Vol. 64, No. 6, pp: 1997-2005.
  27. Mohammad, N.; Karsabet, M.T.; Amani, J.; Ardjmand, A.; Zadeh, M.R.; Gholi, M.K. and Ghasemi, A., 2016. In silico design of a chimeric protein containing antigenic fragments of Helicobacter pylori; a bioinformatic approach. The open microbiology journal. Vol. 10, pp: 97.
  28. Morris, A.L.; MacArthur, M.W.; Hutchinson, E.G. and Thornton, J.M., 1992. Stereochemical quality of protein structure coordinates. Proteins: Structure, Function, and Bioinformatics. Vol. 12, No. 4, pp: 345-364.
  29. Nascimento, J.S.; Ceotto, H.; Nascimento, S.B.; Giambiagi‐deMarval, M.; Santos, K.R.N. and Bastos, M.C.F., 2006. Bacteriocins as alternative agents for control of multiresistant staphylococcal strains. Letters in applied microbiology. Vol. 42, No. 3, pp: 215-221.
  30. Niwa, T.; Ying, B.W.; Saito, K.; Jin, W.; Takada, S.; Ueda, T. and Taguchi, H., 2009. Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins. Proceedings of the National Academy of Sciences. Vol. 106, No. 11, pp: 4201-4206.
  31. Pacheco, B.; Crombet, L.; Loppnau, P. and Cossar, D., 2012. A screening strategy for heterologous protein expression in Escherichia coli with the highest return of investment. Protein expression and purification. Vol. 81, No. 1, pp: 33-41.
  32. Parachin, N.S.; Mulder, K.C.; Viana, A.A.B.; Dias, S.C. and Franco, O.L., 2012. Expression systems for heterologous production of antimicrobial peptides. Peptides. Vol. 38, No. 2, pp: 446-456.
  33. Pawson, T., 2004. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell. Vol. 116, No. 2, pp: 191-203.
  34. Riley, M.A.; Goldstone, C.M.; Wertz, J.E. and Gordon, D., 2003. A phylogenetic approach to assessing the targets of microbial warfare. Journal of evolutionary biology. Vol. 16, No. 4, pp: 690-697.
  35. Riley, M.A., 1998. Molecular mechanisms of bacteriocin evolution. Annual review of genetics. Vol. 32, No. 1, pp: 255-278.
  36. Singh, P.K.; Sharma, V.; Patil, P.B. and Korpole, S., 2012. Identification, purification and characterization of laterosporulin, a novel bacteriocin produced by Brevibacillus sp. strain GI-9. PloS one. Vol. 7, No. 3, pp: e31498.
  37. Singh, P.K.; Solanki, V.; Sharma, S.; Thakur, K.G.; Krishnan, B. and Korpole, S., 2015. The intramolecular disulfide‐stapled structure of laterosporulin, a class IId bacteriocin, conceals a human defensin‐like structural module. The FEBS journal. Vol. 282, No. 2, pp: 203-214.
  38. Skosyrev, V.S.; Kulesskiy, E.A.; Yakhnin, A.V.; Temirov, Y.V. and Vinokurov, L.M., 2003. Expression of the recombinant antibacterial peptide sarcotoxin IA in Escherichia coli cells. Protein expression and purification. Vol. 28, No. 2, pp: 350-356.
  39. Sørensen, H.P. and Mortensen, K.K., 2005. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial cell factories. Vol. 4, No. 1, pp: 1.
  40. Sun, Y.; Li, Q.; Li, Z.; Zhang, Y.; Zhao, J. and Wang, L., 2012. Molecular cloning, expression, purification, and functional characterization of palustrin-2CE, an antimicrobial peptide of Rana chensinensis. Bioscience, biotechnology, and biochemistry. Vol. 76, No. 1, pp: 157-162.
  41. Svetoch, E.A.; Stern, N.J.; Eruslanov, B.V.; Kovalev, Y.N.; Volodina, L.I.; Perelygin, V.V. and Levchuk, V.P., 2005. Isolation of Bacillus circulans and Paenibacillus polymyxa strains inhibitory to Campylobacter jejuni and characterization of associated bacteriocins. Journal of food protection. Vol. 68, No. 1, pp: 11-17.
  42. Terpe, K., 2006. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Applied microbiology and biotechnology. Vol. 72, No. 2, pp: 211-222.
  43. Tagg, J.R.; Dajani, A.S. and Wannamaker, L.W., 1976. Bacteriocins of gram-positive bacteria. Bacteriological reviews. Vol. 40, No. 3, pp: 722-729.
  44. Wang, Y.; Henz, M.E.; Fregeau Gallagher, N.L.; Chai, S.; Gibbs, A.C.; Yan, L.Z. and Vederas, J.C., 1999. Solution structure of carnobacteriocin B2 and implications for structure activity relationships among type IIa bacteriocins from lactic acid bacteria. Biochemistry. Vol. 38, No. 47, pp: 15438-15447.
  45. Xu, X.; Jin, F.; Yu, X.; Ren, S.; Hu, J. and Zhang, W., 2007. High-level expression of the recombinant hybrid peptide cecropinA (1-8)–magainin2 (1-12) with an ubiquitin fusion partner in Escherichia coli. Protein expression and purification. Vol. 55, No. 1, pp: 175-182.