بررسی تاثیر حمام کوتاه مدت هورمون رشد بر تفریخ، جذب کیسه زرده و برخی فراسنجه های خونی تخم، آلوین و بچه ماهی قزل آلا رنگین کمان (Oncorhynchus mykiss) نفوذپذیر شده با هیپوکلریت سدیم

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیلات، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

در این تحقیق اثرات سطوح مختلف هورمون رشد بر درصد تفریخ، جذب کیسه زرده و برخی فراسنجه های خونی در سه مرحله تخم، آلوین و بچه ماهی قزل آلا رنگین کمان مورد بررسی قرار گرفت. در این آزمایش 4 تیمار با غلظتهای 0 (گروه شاهد)، 0/1، 0/5 و 1 میلی گرم بر لیتر هورمون رشد در 3 گروه که هر گروه در سه مرحله تخم، آلوین و بچه­ ماهی با غلظت 0/005 درصد هیپوکلریت سدیم به ­مدت 15 ثانیه نفوذپذیر شده و سپس در غلظت های ذکر شده هورمون رشد به ­مدت 5 دقیقه حمام داده شدند. نتایج نشان داد که درصد و طول دوره تفریخ در کلیه تیمار‌‌ها با گروه شاهد اختلاف معنی دار نداشت (0/05<p ). طول دوره جذب کیسه زرده در غلظت 0/1، در زمان کوتاه‌ تری نسبت به غلظت 0/5 و 1 صورت گرفت و با شاهد اختلاف معنی دار داشت (0/05>p ). بیش‌ ترین میزان گلبول سفید و قرمز به ­ترتیب در غلظت 1 و 0/1 در مرحله تخم دیده شد (0/05>p ). میزان هموگلوبین نیز در غلظت 1 مرحله تخم بیش ترین مقدار را داشت. میزان هماتوکریت در همه غلظت های هر سه گروه (به­ جز درغلظت 1 مرحله بچه ماهی) به­ طور معنی­ داری بیش ­تر از گروه شاهد بود (0/05>p ). بیش‌ ترین میزان گلوکز به ­ترتیب در مرحله بچه ­ماهی، آلوین و تخم مشاهده شد. بیش­ ترین میزان آلبومین و پروتئین کل در غلظت 1 مرحله تخم مشاهده شد که به ­طور معنی­ داری بالاتر از سایر گروه­ ها در مراحل مختلف بود (0/05>p ). در مجموع نتایج نشان داد که بهترین عملکرد در مرحله تخم و در غلظت ۱ میلی­ گرم بر لیتر هورمون مشاهده شد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of short-term growth hormone bath on hatching, absorption of yolk sacs and some blood parameters of egg, Alvin and fry of rainbow trout (Oncorhynchus mykiss) permeable to sodium hypochlorite

نویسندگان [English]

  • Zohre Amirpur
  • Abasali Hajibeglou
  • Mohamad Sudagar
  • Hamed paknezhad
Department of Fisheries, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

 This study investigated the effects of different levels of growth hormone on hatching rate, yolk sac absorption and some blood parameters in egg, Alvin and fry stages of rainbow trout (Oncorhynchus mykiss). The experiment consisted of 4 treatments 0 (control) 0.1, 0.5 and 1 mg/l of growth hormone in 3 groups, each group at 3 stages of fish life (egg, Alvin and fry) permeabeled with sodium hypochlorite (0.005%) for 15 seconds and then Immersed in the concentrations of growth hormone for 5 minutes. Results showed that the percentage and duration of hatching time in all treatments were not significantly different with control (p>0.05). The length of absorption period of yolk sac in 0.1 mg/l was lower than 0.5 and 1 mg/l. Moreover, it was significantly lower than control group (p < 0.05). The highest amount of white and red blood cells was in egg stage with 1 and 0.1 mg/l respectively, which was significantly different from control (p < 0.05). Hemoglobin levels were also highest in 1 mg/l in egg stage. Hematocrit levels were significantly higher in all experimental groups (except in 1 mg/l in fry stage) compared to control. The highest levels of glucose were respectively observed in the fry, Alvin and egg stage. The highest amount of albumin and total protein were observed in 1 mg/l in egg stage which significantly were higher than other experimental and control group in different stages (p < 0.05). in conclusion, in egg stage, 1 mg/l of growth hormone had the best performance compared to other stages

کلیدواژه‌ها [English]

  • Growth Hormone
  • yolk sac
  • Rainbow Trout
  • Hematology Parameters
  • Sodium Hypochlorite
  1. اکبری، پ.؛ فریدونی، م.س. و اخلاقی، م.، 1394. اثر هورمون لووتیروکسین سدیم بر درصد تخمه ­گشایی و بقا لارو قزل‌ آلای رنگین‌ کمان (Onchorhymcus mykiss) در مراحل اولیه رشد. مجله پژوهش­ های جانوری (مجله زیست­ شناسی ایران). جلد 2، شماره 2، صفحات 146 تا 153.
  2. ابوترابی، ر.؛ راوریان، م.؛ مختاری، ا. و رجبان، ر.، 1385. مطالعه کم‌ خونی در مبتلایان به کم کاری تیروئید. مجله علمی نظام پزشکی جمهوری اسلامی ایران. دوره 24، شماره 1، صفحات 13 تا 17.
  3. جمال زاده، ح.؛ کیوان، ا.؛ عریان، ش. و قمی ­مرزدشتی، م.ر.، 1387. بررسی سطوح برخی از شاخص‌ های خونی و بیوشیمیایی ماهیان آزاد دریای خزر (Salmo troutta caspius). مجله علمی شیلات ایران. دوره 17، شماره 3، صفحات 47 تا 54.
  4. حاجی بگلو، ع. و سوداگر، م.، 1397. اثر شدت نور بر نرخ تخم گشایی، بازماندگی و رشد آلوین قزل ‌آلای رنگین ‌کمان (Oncorhynchus mykiss). نشریه توسعه آبزی ‌پروری. دوره 12 شماره 2، صفحات 37 تا 47.
  5. خواجه، غ.؛ مصباح، م. و پیغان، ر.، 1386. مطالعه مقایسه‌ ای برخی پارامتر‌های بیوشیمیایی سرم خون ماهی بنی (Barbus sharpeya) و کپور علف­خوار (Ctenopharyngodon idella) پرورشی. مجله دامپزشکی ایران (دانشگاه شهید چمران اهواز). دوره 3، شماره 4، صفحات 14 تا 23.
  6. ستاری، م.؛ شاهسونی، د.؛ شعبانی­ پور، ن. و شفیعی، ش.، 1385. ماهی‌ شناسی (1). رشت، چاپ دوم، نشر حق‌ شناس. 662 صفحه.
  7. عامری­ مهابادی، م.، 1378. روش‌ های آزمایشگاهی هماتولوژی دامپزشکی. تهران: انتشارات دانشگاه تهران. 126 صفحه.
  8. عبدالله ­نژاد، ز.، 1391. بررسی بیان ژن هورمون رشد طی مراحل تکاملی در تاس ­ماهی سیبری (Acipencer baerii). پایان‌ نامه کارشناسی ارشد، دانشگاه گیلان. 79 صفحه.
  9. شاهسونی، د.؛ وثوقی، غ.ح. و خضرائی ­نیا، پ.، 1377. تعیین برخی فاکتورهای خونی ماهی ازون برون در سواحل جنوب­ شرقی دریای خزر. پژوهش و سازندگی. شماره 44. صفحات 126 تا 130.
  10. مشرقی، م. و بحرینی، م.، 1385. هشدارهایی در بهره ­گیری از هورمون رشد. فصلنامه اخلاق در علوم و فناوری. شماره 1، صفحات 67 تا 72.
  11. Atamanalp, M.; Angis, S.; Oguzhan, P. and Aksakal, E., 2008. Alterations in hematological parameters of rainbow trout (Oncorhynchus mykiss) exposed to DDVP. ‏ Israeli Journal of Aquaculture Bamidgeh. pp: 9-12.
  12. Björnsson, B.T.; Johansson, V.; Benedet, S.; Einarsdottir, I.E.; Hildahl, J.; Agustsson, T. and Jönsson, E., 2002. Growth hormone endocrinology of salmonids: regulatory mechanisms and mode of action. Fish Physiology and Biochemistry. Vol. 27, No. 3-4, pp: 227-242.
  13. Bonga, W., 1997. the stress response in fish. Physiol. Rev. 77 p.
  14. Busby, E.R.; Roch, G.J. and Sherwood, N.M., 2010. Endocrinology of zebrafish: a small fish with a large gene pool. Fish Physiology. Vol. 29, pp: 173-247.
  15. Cabrita, E.; Chereguini, O.; Luna, M.; De Paz, P. and Herráez, M.P., 2003. Effect of different treatments on the chorion permeability to DMSO of turbot embryos (Scophthalmus maximus). Aquaculture. Vol. 221 No. 1-4, pp: 593-604. 
  16. Canosa, L.F.; Chang, J.P. and Peter, R.E., 2007. Neuroendocrine control of growth hormone in fish. General and Comparative Endocrinology. Vol. 151, No. 1, pp: 1-26. 
  17. Dalmolin, C.; Almeida, D.V.; Figueiredo, M.A. and Marins, L.F., 2018. Expression profile of glucose transport related genes under chronic and acute exposure to growth hormone in zebrafish. Comparative Biochemistry and Physiology A. Vol. 221, pp: 1-6. ‏
  18. Duelli, R. and Kuschinsky, W., 2001. Brain glucose transporters: relationship to local energy demand. Physiology. Vol. 16, No. 2, pp: 71-76. ‏
  19. Eisemann, J.H.; Tyrrell, H.F.; Hammond, A.C.; Reynolds, P.J.; Bauman, D.E.; Haaland, G.L. and Varga, G.A., 1986. Effect of bovine growth hormone administration on metabolism of growing Hereford heifers: dietary digestibility, energy and nitrogen balance. Journal of nutrition. Vol. 116, No. 1, pp: 157-163. ‏‏
  20. Fielder, D.S.; Allan, G.L.; Pepperall, D. and Pankhurst, P.M., 2007. The effects of changes in salinity on osmoregulation and chloride cell morphology of juvenile Australian snapper, Pagrus auratus. Aquaculture. Vol. 272, pp: 656-666.
  21. García-Hernández, M.P.; García-Ayala, A.; Elbal, M.T. and Agulleiro, B., 1996. The adenohypophysis of Mediterranean yellowtail, Seriola dumerilii (Risso, 1810): an immunocytochemical study. Tissue and Cell. Vol. 28, No. 5, pp: 577-585. ‏
  22. Kimata, H. and Yoshida, A., 1994. Differential effect of growth hormone and insulin-like growth Factor-I, insulin like growth factor-II, and insulin on Ig production and growth in human plasma cells. Blood. Vol. 83, No. 6, pp: 1569-1574. ‏
  23. Klontz, G.W., 1994. Fish hematology. Techniques in fish immunology, Stolen, J.S.; Fletcher, T.C.; Rowley, A.F.; Kelikoff, T.C.; Kaatari, S.L. and Smith, S.A., (eds). Vol. 3rd. SOS Publications, Fair Haven, New Jersey, USA. pp: 121-132.
  24. Liorente, M.T.; Martos, A. and Castano, A., 2002. Detection of cytogenetic alterations and blood cell changes in natural populations of carp. Ecotoxicology. Vol. 11, No. 1, pp: 27-34.
  25. Lynch, D.V.; Lin, T.T.; Myers, S.P.; Leibo, S.P.; Macintyre, R.J.; Pitt, R.E. and Steponkus, P.L., 1989. A two-step method for permeabilization of Drosophila eggs. Cryobiology. Vol. 26, No. 5, pp: 445-452. ‏
  26. Møller, N. and Jørgensen, J.O.L., 2009. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocrine reviews. Vol. 30, No. 2, pp: 152-177. ‏
  27. Murphy, W.J.; Rui, H. and Longo, D.L., 1995. Effects of growth hormone and prolactin immune development and function. Life sciences. Vol. 57, No. 1, pp: 1-14.‏
  28. Philipps, A.F.; Persson, B.; Hall, K.; Lake, M.; Skottner, A.; Sanengen, T. and Sara, V.R., 1988. The effects of biosynthetic insulin-like growth factor-1 supplementation on somatic growth, maturation, and erythropoiesis on the neonatal rat. Pediatric research. Vol. 23, pp: 298-305. ‏
  29. Riley, L.G.; Hirano, T. and Grau, E.G., 2003. Effects of transfer from seawater to fresh water on the growth hormone/insulin-like growth Factor-I axis and prolactin in the Tilapia, Oreochromis mossambicus. Comparative Biochemistry and Physiology. B. Vol. 136, pp: 647-655.
  30. Sciara, A.A.; Rubiolo, J.A.; Somoza, G.M. and Arranz, S.E., 2006. Molecular cloning, expression and immunological characterization of pejerrey (Odontesthes bonariensis) growth hormone. Comparative Biochemistry and Physiology. C. Vol. 142, No. 3-4, pp: 284-292. ‏
  31. Shalev, E.; Giladi, Y.; Matilsky, M. and Ben-Ami, M., 1995. Decreased incidence of severe ovarian hyperstimulation syndrome in high risk in-vitro fertilization patients receiving intravenous albumin: a prospective study. Human Reproduction. Vol. 10, No. 6, pp: 1373-1386. ‏
  32. Sheridan, M., 2011. Endocrinology of fish growth. Encyclopaedia of fish physiology: from genome to environment. Elsevier. pp: 1483-1489.
  33. ‏‏Simon, C.; Dumont, P.; Cuende, F.X. and Diter, A., 1994. Determination of suitable freezing media for cryopreservation of Penaeus indicus embryos. Cryobiology. Vol. 31, No. 3, pp: 245-253. 
  34. Sloman, K.A. and Armstrong, J.D., 2002. Physiological effects of dominance hierarchies: laboratory artefacts or natural phenomena? Journal of Fish Biology. Vol. 61, No. 1, pp: 1-23.
  35. Sweeting, R.M.; Wagner, G.F. and McKeown, B.A., 1985. Changes in plasma glucose, amino acid nitrogen and growth hormone during smoltification and seawater adaptation in coho salmon, Oncorhynchus kisutch. Aquaculture. Vol. 45, No. 1-4, pp: 185-197. ‏
  36. Tian, Z.G.; Woody, M.A.; Sun, R.; Welniak, L.A.; Raziuddin, A.; Funakoshi, S. and Murphy, W.J., 1998. Recombinant human growth hormone promotes hematopoietic reconstitution after syngeneic bone marrow transplantation in mice. Stem Cells. Vol. 16, No. 3, pp: 193-199.‏
  37. Valencia, M.D.P.; Miller, L.H. and Mazur, P., 1996. Permeabilization of Eggs of the Malaria MosquitoAnopheles gambiae. Cryobiology. Vol. 33, No. 1, pp: 149-162. ‏
  38. Valera, A.L.F.O.N.S.; Rodriguez-Gil, J.E.; Yun, J.S.; McGrane, M.M.; Hanson, R.W. and Bosch, F., 1993. Glucose metabolism in transgenic mice containing a chimeric P-enolpyruvate carboxykinase/bovine growth hormone gene. FASEB Journal. Vol. 7, No. 9, pp: 791-800. ‏
  39. Vihervuori, E.; Virtanen, M.; Koistinen, H.; Koistinen, R.; Seppala, M. and Siimes, M.A., 1996. Hemoglobin level is linked to growth hormone-dependent proteins in short children. Blood. Vol. 87, No. 5, pp: 2075-2081. ‏
  40. Waters, M.J.; Shang, C.A.; Behncken, S.N.; Tam, S.P.; Li, H.; Shen, B. and Lobie, P.E., 1999. Growth hormone as a cytokine. Clinical and Experimental Pharmacology and Physiology. Vol. 26, pp: 760-764.
  41. Zhong, H.; Li, J.; Zhou, Y.; Li, H.; Tang, Y.; Yu, J. and Yu, F., 2016. A transcriptome resource for common carp after growth hormone stimulation. Marine genomics. Vol. 25, pp: 25-27.