بررسی ساختار و تنوع ژنتیکی کبرای خزری Naja oxiana (Eichwald, 1831) در ایران با استفاده از نشانگر میتوکندریایی سیتوکروم b

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

تبارشناسی و چگونگی تکامل کبرای خزری به­ عنوان شرقی‌ ترین گونه از زیرجنس Naja دارای ابهامات زیادی است. هدف این مطالعه، بررسی تنوع و ساختار ژنتیکی و هم چنین ارتباطات تبارشناختی جمعیت‌ های کبرای خزری در شمال شرق ایران، افغانستان و ترکمنستان بوده است. در این مطالعه 1107 جفت باز از قطعه ژن میتوکندریایی سیتوکروم b برای 54 نمونه از کبرای خزری مورد بررسی قرار گرفت. تحلیل تبارشناسی با استفاده از بهترین مدل تکاملی و رسم درخت بیزین و حداکثر درست نمایی و ارتباط بین هاپلوتایپ با استفاده از منطق پارسیمونی مورد بررسی قرار گرفت. بازسازی درخت تبارشناسی نشان داد که همه جمعیت ­های کبرای خزری در نواحی شمال شرقی ایران به­ همراه نمونه ­های کشورهای افغانستان و ترکمنستان متعلق به یک تبار جغرافیائی هستند. هم چنین، گونه Naja kaouthia  به ‌عنوان آرایه خواهری کبرای خزری شناسائی شد. تنوع هاپلوتیپی و تنوع نوکلئوتیدی ژن سیتوکروم b در نمونه­ های مورد بررسی به ترتیب برابر با 0/42 و 0/00058 محاسبه شد که نشان دهنده تنوع ژنتیکی به نسبت پایین در جمعیت کبرای خزری است. نتایج حاکی از گسترش اخیر و ناگهانی جمعیت­ های این گونه از مرزهای شمال شرقی کشور به سوی استان گلستان بوده است و حاکی از آن است که هنوز تمایز ژنتیکی معنی داری بین جمیعت ­های این گونه به ­وقوع نپیوسته و همه جمعیت­ های کبرای خزری ایران را می­ توان به ­عنوان یک واحد تکاملی در نظر گرفته و مورد حفاظت قرار داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Genetic structure and diversity of Naja oxiana (Eichwald, 1831) populations in Iran using cytochrome b mitochondrial marker

نویسندگان [English]

  • Elmira Kazemi 1
  • Mohammad Kaboli 2
  • Nematollah Khorasani 2
1 Department of Environment, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

The phylogenetic relationships of the Caspian cobra (Naja oxiana), the easternmost species of the subgenus Naja, have remained contentious for long. The present study aims at investigating the genetic diversity and structure, as well as phylogenetic relationships of the Caspian cobra populations from northeastern Iran, Afghanistan and Turkmenistan. We sequenced 1107 base pairs of the mitochondrial gene cytochrome b for 54 samples to assess the genetic diversity, genetic structure and phylogenetic relationships of the Caspian cobra. Phylogenetic analyses were conducted under Bayesian and Maximum likelihood inferences using the best-fitting evolutionary model. Haplotype relationships were inferred using maximum parsimony. Reconstruction of the phylogenetic trees confirmed that the Caspian cobra is the sister taxon of Naja kaouthia. The estimated haplotype and nucleotide diversity were 0.42 and 0.00058, respectively, indicating low genetic variation among Caspian cobra populations. Our findings suggest that populations of the species have experienced a recent radiation and sudden range expansion from the northeast toward Golestan province. The results, based on a single mitochondrial marker, revealed no significant genetic differentiation between the populations and recommend that all populations of the Caspian cobra be considered as a significant evolutionary unit in future conservation plans.

کلیدواژه‌ها [English]

  • Caspian cobra (Naja oxiana)
  • Cyt b
  • Genetic diversity
  • Phylogenetic analyses
  • Haplotype network
  1. رجبی­ زاده، م.، 13۹۷. مارهای ایران. انتشارات ایران­ شناسی. 4۹5 صفحه.
  2. شورابی، م.، 1393. بررسی تنوع ژنتیکی میان جمعیت‌ های کفچه مار (Naja oxiana) در ایران با استفاده از نشانگر mtDNA، پایان نامه، دانشکده منابع طبیعی و محیط زیست، دانشگاه تهران. 100 صفحه.
  3. کابلی، م.، 1373. مشاهدات شخصی.
  4. کرمی، پ. و شایسته، ک.، 1397 . بررسی آشیان بوم شناختی قوچ و میش در مناطق حفاظت شده لشگردر-گلپرآباد، الوند-چال خاتون راسوند و پلنگاب. فصلنامه محیط زیست جانوری. سال 10، شماره 4، صفحات 65 تا 74.
  5. محسنی ­نژاد، م. و کرمی، پ.؛ 1399. کمی­ سازی توزیع و روند تغییرات آشیان اکولوژیک خرس قهوه ­ای. فصلنامه محیط زیست جانوری. سال 12، شماره 1، صفحات 1 تا 8.
  6. محمودی، م.؛ ﻣﺤﻤﺪآﺑﺎدی، م. و آﻳﺖ­اﻟﻠﻬﻲ ­ﻣﻬﺮﺟﺮدی، ا.، 1396. ﺑﺮرﺳﻲ اﮔﺰون ﭼﻬﺎرم ژن ﻛﺎﭘﺎﻛﺎزﺋﻴﻦ ﮔﻮﺳﻔﻨﺪ ﻛﺮﻣﺎﻧﻲ ﺑﺎ ﺗﻜﻨﻴﻚ PCR-RFL . ﻣﺠﻠﻪ ﺑﻴﻮﺗﻜﻨﻮﻟﻮژی ﻛﺸﺎورزی. دوره 9، شماره3، صفحات 119 تا 128.
  7. Avise, J.C., 2000. Phylogeography: the history and formation of species. Harvard university press. 285 p.
  8. Burbrink, F.T., 2002. Phylogeographic analysis of the cornsnake (Elaphe guttata) complex as inferred from maximum likelihood and Bayesian analyses. Molecular phylogenetics and evolution. Vol. 53, No. 2, pp: 465-476.
  9. Burbrink, F.T.; Lawson, R. and Slowinski, J.B., 2000. Mitochondrial DNA phylogeography of the polytypic North American rat snake (Elaphe obsoleta): a critique of the subspecies concept. Evolution. Vol. 54, pp: 2107-2118.
  10. Bolfíková, B.C.; Eliásová, K.; Loudová, M.; Krytufek, B.; Lymberakis, P.; Sándor, A.D. and Hulva, P., 2017. Glacial allopatry vs. postglacial parapatry and peripatry: the case of hedgehogs. Peer J. Vol. 5, pp: e3163.
  11. Darriba, D.; Taboada, G.L.; Doallo, R. and Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods. Vol. 9, pp: 772.
  12. Darvish, J. and Rastegar-Pouyani, E., 2012. Biodiversity conservation of reptiles and mammals in the Khorasan Provinces, northeast of Iran. Progress in Biological Sciences. Vol. 2, pp: 95-10.
  13. Excoffier, L., 2004. Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Molecular Ecology. Vol. 13, pp: 853-864.
  14. Excoffier, L.; Laval, G. and Schneider, S., 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatic. Vol.1, pp: 47-50.
  15. Frankham, R., 2005. Genetics and extinction. Biological journal of Conservation. Vol. 126, pp: 131-140.
  16. Fraser, D.J. and Bernatchez, L., 2001. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Molecular Ecology. Vol. 10, pp: 274-2752.
  17. Fu, Y.X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. Vol. 147, pp: 915-925.
  18. Gold, B.S.; Dart, R.C. and Barish, R.A., 2002. Bites of venomous snakes. The New England Journal of Medicine. Vol. 347, pp: 347-335.
  19. Hall, T.A., 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. Vol. 41, pp: 95-98.
  20. Hung, C.; Drovetski, S.V. and Zink, R.M., 2012. Multilocus coalescence analyses support a mtDNA-based phylogeographic history for a widespread palearctic passerine bird, Sitta europaea. Evolution. Vol. 66, pp: 2850 -2864.
  21. IUCN. 2019. The IUCN Red List of Threatened Species. Version 2019-2 (Accessed 08 August 2019) http://www. iucnredlist.org.
  22. Kapli, P.; Botoni, D.; Ilgaz, Ç.; Kumlutaş, Y.; Avcı, A.; Rastegar-Pouyani, N.; Fathinia, B.; Lymberakis, P.; Ahmadzadeh, F. and Poulakakis, N., 2013. Molecular phylogeny and historical biogeography of the Anatolian lizard Apathya (Squamata, Lacertidae). Molecular Phylogenetics and Evolution. Vol. 66, pp: 992-1001.
  23. Klemmer, K., 1968. Classification and distribution of European, North African, and north and west Asiatic venomous snakes. Venom. Anim. Their Venoms. Vol. 1, pp: 309-325.
  24. Latifi, M., 1991. The Snakes of Iran., English edition. Society for the study of Amphibians and Reptiles, Oxford, Ohio. viii 159 pp., 24 text-figs; 25 col. pls; 3 tables. (Translated from the Iranian edition by Sajadian, S., volume editors, Leviton, A. and Zug, G.,).
  25. Leigh, J.W. and Bryant, D., 2015. POPART: full-feature software for haplotype network Construction. Methods in Ecology and Evolution. Vol. 6, pp: 1110-1116.
  26. Li, H.L.; Fong, E.S. and Lin, S., 2008. Ventral coloration differentiation and mitochondrial sequences of the Chinese Cobra (Naja atra) in Taiwan. Conservation Genetic. Vol. 9, pp: 1089-1097.
  27. Librado, P. and Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. Vol. 25, pp: 1451-1452.
  28. Lin, A.L.; Zhao, Q.; Ji, X.; Lin, L.; Zhao, Q. and Ji, X., 2008. Conservation Genetics of the Chinese Cobra (Naja atra) Investigated with Mitochondrial DNA Sequences Conservation Genetics of the Chinese Cobra (Naja atra). Investigated with Mitochondrial DNA Sequences. Zoological Science. Vol. 25, pp: 888-893.
  29.  Lin, L.; Qu, Y.; Li, H.; Zhou, K. and Ji, X., 2012. Genetic Structure and Demographic History Should Inform Conservation: Chinese Cobras Currently Treated as homogenous show population divergence. Vol 7, pp: e36334.
  30. Lin, L.; Hua, L.; Qu, Y.; Gao, J. and Ji, X., 2014. The Phylogeographical Pattern and Conservation of the Chinese Cobra (Naja atra) across Its Range Based on Mitochondrial Control Region Sequences. PLoS One. Vol. 9, pp: e106944.
  31. Meister, B.; Hofer, U.; Ursenbacher, S. and Baur, B., 2010. Spatial genetic analysis of the grass snake, Natrix natrix(Squamata: Colubridae), in an intensively used agricultural landscape. Biological journal of linnean society. Vol. 101, pp: 51-58.
  32. Mohammadabadi, M.R., 2017. Role of clostridium perfringens in pathogenicity of some domestic animals. Journal of Advances in Agriculture. Vol. 7, pp: 1117-1121.
  33. Moritz, C., 1994.  Defining ‘evolutionarily significant units’ for conservation. Trends ecology evolution. Vol. 9, pp: 373-375.
  34. Nazarizadeh, M.; Kaboli, M., Rezaie, H.R.; Harisini, J.I. and Pasquet, E., 2016.  Phylogenetic relationships of Eurasian Nuthatches (Sitta europaea Linnaeus, 1758) from the Alborz and Zagros Mountains, Iran. Zoology in the Middle East. Vol. 62, pp: 217-226.
  35. O’Shea, M., 2008. Venomous snakes of the world. New Holland Publishers.
  36. Pook, C.E.; Joger, U.; Stümpel, N. and Wüster, W., 2009. When continents collide: phylogeny, historical biogeography and systematics of the medically important viper genus Echis (Squamata: Serpentes: Viperidae). Molecular Phylogenetics and Evolution. Vol. 53, pp: 792-807.
  37. Queiroz, A.; Lawson, R., and Lemos-Espinal, J., 2002. Phylogenetic relationships of North American garter snakes (Thamnophis) based on four mitochondrial genes: how much DNA sequence is enough? MolecularPhylogenetics and Evolution. Vol. 22, No. 2, pp: 315-329.
  38. Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G. and Suchard, M.A., 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology. Vol. 67, pp: 901-904.
  39. Ronquist, F. and Huelsenbeck, J.P., 2003.  MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. Vol. 19, pp: 1572-1574.
  40. Rogers, A.R. and Harpending, H., 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular biology and evolution. Vol 9, No. 3, pp: 552-569.
  41. Ryder, O.A., 1986.  Species conservation and systematics: the dilemma of subspecies. Trends Ecology Evolution. Vol. 1, pp: 9-10.
  42. Sambrook, J.; Fritsch, E.F. and Maniatis, T., 1989. Molecular cloning: a laboratory manual. Cold Spring Harbour: ColdSpring Harbour Press.
  43. Slatkin, M. and Hudson, R.R., 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics. Vol. 129, pp: 555-562.
  44. Slowinski, J.B. and Wüster, W., 2000. A new cobra (Elapidae: Naja) from Myanmar (Burma). Herpetologica. pp: 257-270.
  45. Smith, J.M. and Haigh, J., 1974. The hitch-hiking effect of a favourable gene. Genetics Research. Vol. 23, No. 1, pp: 23-35.
  46. Stamatakis, A.; Ludwig, T. and Meier, H., 2005. RAxML III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics. Vol. 21, pp:456- 463.
  47. Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. Vol.123, pp: 585-595.
  48. Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M., and Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution. Vol. 28, pp: 2731-2739.
  49. Thompson, J.D.; Higgins, D.G. and Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research. Vol. 22, No. 22, pp: 4673-4680.
  50. Valenta, J., 2009. Venomous Snakes: Envenoming, Therapy. Nova Science Publishers.
  51. Wallach, V.; Wuester, W. and Broadley, D.G., 2009. In praise of subgenera: taxonomic status of cobras of the genus Naja Laurenti (Serpentes: Elapidae). Zoo taxa. Vol. 2236, pp: 26-36.
  52. Wüster, W., 1990. Population evolution of the Asiatic cobra (Naja naja) species complex. Univ. Aberdeen 500.
  53. Wüster, W. and Broadley, D.G., 2003. A new species of spitting cobra from north-eastern Africa (Serpentes: Elapidae: Naja). Journal of Zoology, London. Vol. 259, pp: 345-359.
  54. Wüster, W.; Crookes, S.; Ineich, I.; Mané, Y.; Pook, C.E.; Trape, J.F. and Broadley, D.G., 2007. The phylogeny of cobras inferred from mitochondrial DNA sequences: Evolution of venom spitting and the phylogeography of the African spitting cobras (Serpentes: Elapidae: Naja nigricollis complex). MolecularPhylogenetics and Evolution. Vol. 45, pp: 437- 453.
  55. Wüster, W. and Thorpe, R.S., 1988. Population affinities of the asiatic cobra (Naja naja) species complex in south-east Asia: reliability and random resampling. Biological Journal of Linnean Society. Vol. 36, pp: 391-409.
  56. Xia, X. and Lemey, P., 2009. The phylogenetic handbook: a practical approach to DNA and protein phylogeny.
  57. Young, A.G., 2000. Genetics, demography and viability of fragmented populations. Cambridge University Press.
  58. Zhao, E.; Wang, S. and Commission, E.S.S., 1998. China red data book of endangered animals: Amphibia and reptilia. Amphibia & reptilia/chief compiler Zhao Ermi. Science Press.