تاثیر افزودنی اسیدی و تلقیح باکتریایی بر ترکیب شیمیایی، خصوصیات تخمیری، فراسنجه های تولید گاز و قابلیت هضم سیلاژ تفاله گوجه فرنگی و بقایای کدو آجیلی در تغذیه نشخوارکنندگان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، واحد قائمشهر، دانشگاه آزاد اسلامی، قائمشهر، ایران

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه گنبد کاووس، گنبد کاووس، ایران

چکیده

این پژوهش به ­منظور ارزیابی اثرات اسید آلی و باکتری ­های مولد اسید لاکتیک بر روی ترکیب شیمیایی، خصوصیات تخمیری، تولید گاز و قابلیت هضم سیلاژ تفاله گوجه فرنگی و ضایعات کدو آجیلی انجام شد. تیمارهای آزمایشی در سه تکرار برای هر زمان در کیسه­ های نایلونی به وزن 3 کیلوگرم به­ صورت دستی فشرده و به ­مدت 1، 3، 7، 21، 45 و 90 روز سیلو شدند. تیمارهای آزمایشی شامل: 1) مخلوط تفاله گوجه فرنگی و بقایای کدو آجیلی به نسبت 1: 1 (شاهد)، 2) شاهد + اسید استیک (1 درصد ماده خشک)، 3) شاهد + افزودنی باکتریایی تولید شده در آزمایشگاه (109×8 واحد تشکیل کلنی )، 4) شاهد + اسید استیک + افرودنی باکتریایی، بودند. نتایج نشان داد بین تیمارها شده از نظر ماده خشک در روز 7­ام  اختلاف معنی ­داری وجود داشت (0/05>P). بین تیمارها از نظر مقدار پروتئین خام اختلاف معنی ­داری وجود نداشت؛ با این حال، بیش ترین و کم ترین روند کاهشی به ترتیب مربوط به تیمار شاهد و تیمار دارای باکتری بود. از نظر مقدار الیاف نامحلول در شوینده خنثی و الیاف نامحلول در شوینده اسیدی بین تیمارهای آزمایشی در تمامی زمان­ های پس از سیلو کردن اختلاف معنی ­داری وجود نداشت (0/05<P). غلظت نیتروژن آمونیاکی با افزایش زمان پس از سیلو کردن روند افزایشی داشت و در روزهای 1، 45 و 90 بین تیمارهای آزمایشی اختلاف معنی­ داری مشاهده گردید  (0/05>P). پایین­ ترین مقدار pH در روز 90 پس از سیلو کردن در سیلاژ دارای افزودنی باکتریایی (3/85) مشاهده شد. تیمارهای حاوی افزودنی دارای نرخ تولید گاز بالاتری بودند، با این حال بین تیمارهای آزمایشی از نظر انرژی قابل متابولیسم و غلظت اسیدهای چرب کوتاه زنجیر اختلاف معنی ­داری وجود نداشت (0/05<P). بین تیمارهای آزمایشی از نظر قابلیت هضم، عامل تفکیک و تولید پروتئین میکروبی در سیلاژهای روزهای 21 و 45 اختلاف معنی داری وجود داشت. به ­طور کلی، نتایج نشان داد که استفاده از افزودنی­ های مختلف در مقایسه با تیمار شاهد تأثیر قابل ملاحظه­ ای بر ارزش تغذیه ­ای سیلاژ مخلوط تفاله گوجه فرنگی و ضایعات کدو آجیلی نداشتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of organic acid and bacterial inoculant on chemical composition, fermentation characteristics, gas production and digestibility parameters of tomato pomace and pumpkin waste silage

نویسندگان [English]

  • Esmaeil Ganji jameh shooran 1
  • Kaveh Jafari Khorshidi 1
  • Javad Bayat Koohsar 2
1 Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Ghaemshahr Branch, Islamic Azad University, Ghaemshahr, Iran
2 Department of Animal Sciences, Faculty of Agriculture, Gonbad Kavous University, Gonbad Kavous, Iran
چکیده [English]

A study was conducted to evaluate the effect of using organic acid and (acetic acid) and lactic acid bacteria on chemical composition, fermentation characteristic and gas production parameters of tomato pomace and pumpkin waste silage in a completely randomized design. Representative of samples were packed manually, in triplicate into plastic bags and were stored at ambient temperature and allowed to ensiled for 1, 3, 7, 21,45 and 90 days. The following treatments were applied to the forage samples: 1) tomato pomace and pumpkin waste silage mix (50:50), without any additives (control), 2) control + acetic acid (1% of DM), 3) control + LAB made inoculant (8×109 CFU/ml) and 4) control + organic acid + LAB made inoculants. Results showed that there were differences among treatments on DM content on day 7 (p<0.05). Although there was no significant difference among treatments on CP content, however, the highest and lowest decreasing trends were related to control and bacterial treatments, respectively. There were no significant differences among treatments on ADF and NDF contents in all ensiling times. The highest and lowest ash content was related to organic acid treated silage and control treatments. NH3-N increased with time post-ensiling, and there were significant among treatments on days 1, 45 and 90. Inoculated silage had the lowest pH (3.85) comaperd with other treatments on day 90. The control had the lowest gas production rate compared with other treatments; however, there were no differences among treatments on ME and SCFA. There were significant differences among treatments on digestability, partition factore and microbial protein on 21 and 45 days' silages. Generally, obtained results showed that different additives had no considerable effect on the nutritive value of tomato pomace and pumpkin waste silage.

کلیدواژه‌ها [English]

  • Tomato Pomace Silage
  • Pumpkin Waste Silage
  • Organic Acid
  • Bacterial Inoculant
  • Fermentation
  1. آمارنامه کشاورزی. محصولات زراعی، سال زراعی 90-1389، وزارت جهاد کشاورزی، جلد اول.
  2. علیخانی، م.؛ الموتی، ع.ا .؛ قربانی، غ.ر. و صادقی، ن.، 1384. اثرملاس، اوره. و تلقیح باکتریایی بر ترکیب شیمیایی و تجزیه ­پذیری ماده خشک آفتابگردان سیلو شده. مجله علوم و فنون کشاورزی و منابع طبیعی. شماره 3، صفحات171 تا 182.
  3. مکاری، ف.؛ بیات­ کوهسار، ج.؛ قنبری، ح. و فلاحی، ع.، اثر افزودنی باکتریایی، اسیدهای آلی و اوره بر ترکیب شیمیایی، خصوصیات تخمیری، فراسنجه ­های تولید گاز و گوارش پذیری علوفه سیلو شده تریتیکاله در شرایط بروتنی. تحقیقات تولیدات علوم دامی. سال 6، شماره 2، صفحات 13 تا 27.
  4. منصوری، ه نیکخواه، ع رضاییان، م مرادی، م. و میرهادی، س.ا تعیین میزان تجزیه پذیری علوفه با استفاده از فن تولید گاز و کیسه­ های نایلونی. علوم کشاورزی ایران. شماره 34، صفحات 495 تا 507.
  5. ولی­ زاده، ر.؛ ناصریان، ع. و اژدری­ فرد ا.، بیوشیمی سیلاژ (ترجمه). انتشارات دانشگاه فردوسی مشهد. صفحات 12 تا 15.
  6. Adesogan, A.T.; Krueger, N.; Salawu, M.B.; Dean, D.B. and Staples, C.R., 2004. The influence of treatment with dual purpose bacterial incubation soluble carbohydrates on the fermentation and aerobic stability of Bermuda grass. Journal of Dairy Science. Vol. 87, pp: 3407-3416.
  7. Adesogan, A.T.; Salawu, M.B. and Deaville E., 2002. The effect on voluntary feed intake, in vivo digestibility and nitrogen balance in sheep of feeding grass silage or pea-wheat intercrops differing in pea to wheat ratio and maturity. Journal of Animal Feed Science and Technology. Vol. 96, pp: 161-173.
  8. Aksu, T.; Baytok, E.; Akif Karsli, M. and Muruz, H., 2006. Effects of formic acid, molasses and inoculant additives on corn silage composition, organic matter digestibility and microbial protein synthesis in sheep. Journal of Small Ruminant Research. Vol. 61, pp: 29-33.
  9.  AOAC. 2005. Official Methods of Analysis. (18th ed). Association of Official Analytical Chemists Washing TownT D.C. Vol. 1, NO. 1.
  10. Arbabi, S.; Ghorchi, T. and Naserian, A.A. 2008. The effect of dried citrus pulp, dried beet sugar pulp and wheat straw as silage additives on by- products of orange silage. Asian journal of Animal Science. Vol. 2, pp: 35-42.
  11. Bayat kouhsar, J.; Tahmasebi, A.M. and Naserian, A.A., 2011. The effects of microbial inoculation of corn silage on performance of lactating dairy cows. Journal of Livestock Science, Vol.142, pp: 170-174.
  12. Baytok, E.; Aksu, T.; Karsli, M.A. and Muruz, M., 2005. The Effects of formic Acid, Molasses and Inoculants as Silage Additives on Corn Silage Composition and Ruminal Fermentation Characteristics in sheep. Turk Journal of Veterinary Animal Science. Vol. 29, pp: 469-474.
  13. Beuvink, J.M.W. and Spoelstra, S.F., 1992. Interaction between substrate, fermentation end-products, buffering systems and gas production UP. On fermentation of different carbohydrates by mixed rumen microorganisms in vitro. Journal of Applied Microbiology and Biotechnilogy. Vol. 37, pp: 505-509.
  14. BLlummel, M. and Steingass, H. and Becker K., 1997. The relationship between in vitro gas production, in vitro microbial biomas yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition. Vol. 77, pp: 911- 921.
  15. Broderick G.A. and Kang, J.H., 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science. Vol. 63, pp: 64-75.
  16. Dryhurst, N. and Wood, C.D., 1998. The effect of nitrogen source and concentration on In vitro gas production using rumen micro-organisms. Journal of Animal Feed Science and Technology. Vol. 71, pp: 131-143.
  17. El-Boushy, A.R.Y., 1994. Poultry feed from waste, processing and use. Fruit, vegetable and brewers waste. Citrus pulp. Chapman and Hall LTd. Lodon. UK. pp: 204-224.
  18. Ergül, M., 1988. Replacement of fishmeal by brewer's yeast in broiler rations with high levels of cottonseed meal and sunflower seed meal. Landbauforschung Vlkenrode. Vol. 38, pp: 211-219.
  19.  Feedipedia. 2011. Tomato pomace: tomato skins and tomato seeds.
  20. Filya, I.; Muck, R.E. and Contreras-Govea, F.E., 2007. Inoculant Effects on Alfalfa Silage: Fermentation Products and Nutritive Value. Journal of Dairy Science. Vol. 90, pp: 5108-5114.
  21. Flork, S.; Purwin, C.; Mainakowski, D.; Stanek, M. and Tredowicz, M., 2004. The influence of formic acid additives A. Use of phytogenic products feed on the quality of silage from different plant material. Journal of Veterinary. Ir zootechnike. Vol. 26, pp: 1392-2130.
  22. Gallo, J.; Fernye, C.; Orosz, S.; Katona, K. and Szemethy L., 2017. Tomato pomace silage as apotential new supplementary food for game species. Journal of Agriculture and food science. Vol. 26, pp: 80-90.
  23. Haghparvar, R.; Shojaian, K.; Rowghani, E.; Parsaei, S. and Yousef Ellahi, M., 2012. The effects of Lactobacillus plantarum on chemical composition, rumen degradability, in vitro gas production and energy content of whole-plant corn ensiled at different stages of maturity. Iran Journal of Veterinary Research. Vol. 13, pp: 8-15.
  24. Hashemzadeh-Cigari, F.; Khorvash, M.; Ghorbani, G.R.; Ghasemi, E.; Taghizadeh, A.; Kargar, S. and Yang, W.Z., 2014. Interactive effects of molasses by homofermentative and heterofermentative inoculants on fermentation quality, nitrogen fractionation, nutritive value and aerobic stability of wilted alfalfa (Medicago sativa L) silage. Journal of Animal Physiology and Nutrition. Vol. 98, pp: 290-299.
  25. Hassanat, F.; Gervais, R. and Benchaar, C., 2017. Methane production, ruminal fermentation characteristics, nutrient digestibility, nitrogen excretion, and milk production of dairy cows fed conventional or brown midrib corn silage. Journal of Dairy Science. Vol. 4, pp: 2625-2636.
  26. Higginbotham, G.E.; DePeters, E.J. and Muellr, S.C., 1996. Effect of propionic acid producing bacteria on corn silage fermentation. Journal of Professional Animal Science. Vol. 12, pp: 176-180.
  27. Hristov, A.N. and McAllister, T.A., 2002. Effect of inoculants on whole-crop barley silage fermentation and dry matter disappearance in situ. Journal of Animal Science. Vol. 80, pp: 510-516.
  28. Huhtanen, P., 2007. Associative effect of feeds in ruminants. Norwegian Journal of Agricultural Sciences Suppl. Vol. 5, pp: 37-57.
  29. Keady T.W.J.; Steen, R.W.J.; Kilpatrick. D.J. and Mayne, CS., 1994. Effects of inoculant treatment on silage fermentation, digestibility and intake by growing cattle. Grass Forage Science. Vol. 49, pp: 284-294.
  30. Kizilsimsek, M.; Schmidt, R.J. and Kung, L., 2007. Effects of a mixture of lactic Acid bacteria applied as a freeze-dried or fresh culture on the fermentation of alfalfa silage. Journal of Dairy Science. Vol. 90, pp: 5698-5705.
  31. Kleinschmit, D.H. and Kung, J.R.L., 2006. The effects of lactobacillus buchneri 40788 and pediococcus pentosaceus R1094 on the fermentation of corn silage. Journal of Dairy Science. Vol. 89, pp: 3999-4004.
  32. Kung, Jr.L. and Muck, R.E., 1997. Animal response to silage additives. In: proceedings of the silage: Field to Feedbunk, North American conference, Hershey PA USA, Northeast Regional Agricultural Enginneering Service.
    pp: 200-210.
  33. Kung, L.; Treacher, R.J.; Nauman, G. A.; Smagala, A.M.; Endres, K.M. and Cohen, M.A., 2000. The effect of treating forages with fibrolytic enzymes on its nutritive value and lactation performance of dairy cows. Journal of Dairy Science. Vol. 83, pp: 115-122.
  34. Kung, L.M. and Shaver, R., 2001. Interpretation and use of silage fermentation analysis reports. Univesity of Wisconsin, Madison, WI, USA, Focus on Forage. Vol. 3, pp: 1-5.
  35. Mahala, A.G. and Khalifa, I.M., 2007. The effect of molasses on quality of sorghum (Sorghum bicolor) silage. Res. Journal of Animal Veterinaly Science. Vol. 2, pp: 43-46.
  36. Makkar, H.P.S., 2005. In vitro gas methods for evaluation of feeds containing phytochemicals. Journal of Animal Feed Science. Vol. 123, pp: 291-302.
  37. McAllister, T.A.; Reniuk, R.; Mir, Z.; Mir, P.; Selinger, S.B. and Cheng, K.J., 1998. Inoculants for ahfalfa silage: effects on aerobic stability, digestibility and the growth performance of feedlot streets. Journal of Livestock Production Science. Vol. 53, pp: 171-181.
  38. McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A. and Sinclair, La., 2001. Animal nutrition, 7 ed. 715 p.
  39. Menke, K.H. and Steingass, H.H., 1988. Estimation of the energetic feed value obtained frome chemical analysis and in vitro gas production using rumen fluid. Journal of Animal Research and Development. Vol. 28, pp: 7-55.
  40. Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D. and Schneider, W., 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agriculture Science. Vol. 93, pp: 217-222.
  41. Muck, R.E., 1988. Factors influencing silage quality and their implications for management. Journal of Dairy Science. Vol. 71, pp: 2992-3002.
  42. Muck, R.E.; Holmes, B.J. and Savoie, P., 2004. Packing practice effects on density in bunker silos. ASABE Paper Number 041137, ASABE, St. Joseph, MI.
  43. Naghel, G.A. and Brodrick, J.H., 1992. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro Journal of Dairy Science. Vol. 63, pp: 64-75.
  44. Olivera, R.M.P., 1998. Use of in vitro gas production technique to assess the contribution of both soluble and insoluble fraction on the nutritive value of forages. A thesis to the University of Aberdeen, Scotland, in partial fulfillment of the degree of Master of Science in animal nutrition.
  45. Orskov, E.R. and McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to the rate of passage. Journal of Agriculture of Science. Vol. 92, pp: 499-503.
  46. Oude Elferink, S.J.; Krooneman, J.; Gottschal, J.C.; Spoelstra, S.F.; Faber, F. and Driehuis, F., 2001. Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol. Vol. 67, pp: 125-132.
  47. SAS Institute. 2000. SAS User’s Guide: Statistics, Version 9.1 Edition. Cary, NC, USA
  48. Slottner, D. and Bertilsson, J., 2006. Effect of ensiling technology on protein degradation during ensiling. Journal of Animal Feed Science and Tecnology. Vol. 127, pp: 101-111.
  49. Sommart, K.; Parker, D.S.; Rowlinson, P. and Wanapa, M., 2000. Fermantation characteristics and microbial protein synthesis in an in vitro system using Cassava, Rice straw and dried Ruzi grass as substrates. Asian- Astralasian Journal of Animal Sciences. Vol. 13, pp: 1084-1093.
  50. Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B. and France, J., 1994. A simple gas production method using a pressure transducer to determine the fermentation.
  51. Ulger, I.; Kaliber, M.; Ayahan, T. and Küçük, O., 2018. Chemical composition, organic matter digestibility and energy content of apple pomace silage and its combination with corn plant, sugar beet pulp and pumpkin pulp. South African Journal Animal Science. Vol. 48, pp: 497-503.
  52. Van Soest, P.J., 1994. Function of the ruminant forestomach. In Nutritional Ecology of the Ruminant. Cornell University Press, Ithaca, NY. Vol. 2, pp: 230-252.
  53. Weiss, W.P.; Frobose, D.L. and Koch, M.E., 1997. Wet tomato pomace ensiled with corn plants for dairy cows. Journal of Dairy Science. 80, pp: 2896-2900.
  54. World Processing Tomato Council (WPTC). 2019. World Production Estimate as of 12 February Available online: https:// www. wptc. to/ pdf/releases/WPTC%20 world %20production %20estimate%20 as %20of % 2012 % 20 February%202019.
  55. Yavus, M.; Ohba, N.; Shimojo, M.; Furuse, M. and Masuda, Y., 2007. Effects of adding urea and molasses on napiergrass silage quality. Asian-Australasian Journal of Animal Sciences. Vol. 13, pp: 1532-1542.