پیش بینی تاثیر تغییر اقلیم بر مطلوبیت زیستگاه گربه شنی (Felis margarita)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه محیط زیست، دانشکده کشاورزی، واحد اراک، دانشگاه آزاد اسلامی،‌ اراک،‌ ایران

چکیده

آگاهی از تاثیرات تغییر اقلیم بر زیستگاه‌های مطلوب گونه‌ها یک نیاز اساسی برای مدیریت بلند مدت جمعیت گونه‌های حیات وحش است. در این پژوهش با استفاده از روش مکسنت، مطلوبیت اقلیمی زیستگاه گربه شنی (Felis margarita)، برای زمان حاضر تهیه و بر طبق بهترین و بدترین سناریوی ورود گازهای گلخانه‌ای برای سال‌های ۲۰۵۰ و ۲۰۷۰ در سطح کشور شبیه سازی شد. نتایج مدل سازی در حال حاضر نشان می‌دهد که 18 درصد از وسعت کشور از زیستگاه‌های مطلوب برای گربه شنی تشکیل شده است. اما تنها 15 درصد از این زیستگاه‌ها داخل مناطق حفاظتی تحت حفاظت قرار گرفته‌اند. گربه شنی از مناطق با بارش سالانه زیاد دوری نموده و مناطق با میانگین دمای سالانه بالا را ترجیح می‌دهد. تحت تاثیر تغییر اقلیم در سناریوی کم ترین ورود گازهای گلخانه‌ای به اتمسفر برای سال 2070 امکان افزایش زیستگاه گربه شنی نسبت به حال حاضر وجود دارد و هم چنین زیستگاه‌های تحت حفاظت افزایش می‌یابد. در سایر سناریوها نیز کاهش زیستگاه گربه شنی بر اثر تغییر اقلیم بسیار اندک می‌باشد. نتایج این مطالعه نشان می‌دهد که گربه شنی برنده فرایند تغییر اقلیم است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of Climate change impact on sand cat habitat suitability

نویسندگان [English]

  • Taghi Mahdavi
  • Bahman shams esfand abad
  • Hamid Toranjzar
  • Nourollah Abdi
  • Abbas Ahmadi
Department of Environment, Faculty of Agriculture, Arak Branch, Islamic Azad University, Arak, Iran
چکیده [English]

Awareness of climate change impacts on suitable habitats of wildlife species is a prerequisite for long-term management of wildlife populations. In this research, we applied maxent approach to investigate the consequences of climate change on climatic habitat suitability for sand cat (Felis margarita) for present, the best, and the worst greenhouse gas emission scenarios for 2050 and 2070, throughout the country.  Modeling results indicated that nearly 18 percent of area of the country is currently suitable for the sand cat. However, only 15 percent of suitable habitats are conserved inside the protected area network. Sand cat avoids areas with high annual precipitation and prefers areas with high mean annual temperature. Under influence of climate change in lowest emission scenario in 2070, the area of suitable habitats and conserved habitats increases. In other scenarios, there are negligible decrease of suitable habitats. Therefore, it could be concluded that sand cat is the winner of climate change.

کلیدواژه‌ها [English]

  • Sand cat
  • Climate change
  • Habitat suitability
  • Protected areas
  1. شمس، ع.؛ نظامی ­بلوچی، ب.؛ رایگانی، ب. و شمس ­اسفندآباد، ب.، 1398. تغییرات اقلیمی و اثرات آن بر زیستگاه‌های مطلوب یوزپلنگ آسیایی در مرکز ایران (مطالعه موردی: استان یزد). فصلنامه محیط زیست جانوری. سال 11، شماره ۳، صفحات 1 تا 12.
  2. شمس ­اسفندآباد، ب. و کابلی، م.، 1397، توسعه شبکه مناطق حفاظتی با به ­کارگیری رویکرد برنامه ­ریزی سیستماتیک در ایران. فصلنامه محیط زیست جانوری. سال 10، شماره 4، صفحات 147 تا 162.
  3. ضیایی، ه.، 1387. راهنمای صحرایی پستانداران ایران. انتشارات مرکز حیات وحش. 421 صفحه.
  4. غفاری‌پور، س.؛ نادری، م.؛ ریاضی، ب. و رضایی، ح.، 1396. رابطه الگوی گزینش خرد زیستگاهی طعمه و طعمه‌خوار، مطالعه موردی گربه شنی (Felis margarita) در سیستان و بلوچستان. فصلنامه محیط زیست جانوری. سال 9، شماره ۱، صفحات 65 تا 70.
  5. کرمی، م.؛ قدیریان، ط. و فیض ­الهی، ک.، 1395. اطلس پستانداران ایران. انتشارات سازمان حفاظت محیط زیست. 290 صفحه.
  6. مجنونیان، ه.، 1393. مناطق حفاظت شده، مبانی و تدابیر حفاظت از پارک‌ها و مناطق در ایران و جهان. انتشارات نشر دی. ۴۱۴ صفحه.
  7. مروتی، م.؛ کابلی، م.؛ پناهنده، م.؛ سرباز، م. و احمدیان، ش.، 1396. مدل ­سازی زیستگاه یوزپلنگ آسیایی (Acinonyx jubatus venaticus) تحت تاثیر تغییرات اقلیمی در ایران با استفاده از نرم‌افزار Maxent. فصلنامه محیط زیست جانوری. سال 9،‌ شماره ۱، صفحات 20 تا 13.
  8. همامی، م.؛ اسمعیلی، س. و اکبری ­فیض‌آبادی، ح.، 1390. پراکندگی و فراوانی گربه شنی (Felis margarita) در پناهگاه حیات وحش عباس‌آباد. همایش ملی بوم‌های بیابانی، گردشگری و هنرهای محیطی، نجف آباد. دانشگاه آزاد اسلامی واحد نجف‌آباد.
  9. Abbasian, M.; Moghim, S. and Abrishamchi, A., 2018. Performance of the general circulation models in simulating temperature and precipitation over Iran. Theor Appl Climatol. pp: 1-19. https://doi.org/10.1007/s00704-018-2456-y
  10. Ashrafzadeh, M.R.; Naghipour, A.A.; Haidarian, M. and Khorozyan, I., 2018. Modeling the response of an endangered flagship predator to climate change in Iran. Mammal Research. https://doi.org/10.1007/s13364-018-03 84-y.
  11. Fielding, A.H. and Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence   Environmental Conservation. No. 24, pp: 38-49.
  12. Ghadirian, T.; Akbari, H.; Besmeli, M.; Ghoddousi, A.; Hamidi, A. and Dehkordi, M., 2016. Sand cat in Iran present status, distribution and conservation challenges. CATnews Special Issue. No. 10, pp: 56-59.
  13. Ghafaripour, S.; Naderi, M. and Rezaei, H.R., 2017. Investigating abundance, density and potential threats of sand cat in the South-Eastern parts of Iran. Journal of wildlife and Biodiversity. Vol. 1, No. 1, pp: 47-55.
  14. Groves, C.R.; Game, E.T.; Anderson, M.G.; Cross, M. and Enquist, C., 2012. Incorporating climate change into systematic conservation planning. Biodiversity Conservation. No. 21, pp: 1651-1671.
  15. Hijmans, R.J.S.E.; Cameron, J.L.; Parra, P.G. and Jones, Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology. No. 25, pp:1965-1978.
  16. Keith, D.A.; Akçakaya, H.R.; Thuiller, W.; Midgley, G.F.; Pearson, R.G.; Phillips, S.J.; Regan, H.M.; Araújo, M.B. and Rebelo, T.G., 2008. Predicting extinction risks under climate change: Coupling stochastic population models with dynamic bioclimatic habitat models. Biological Letters. No. 4, pp: 560-563.
  17. Heller, N.E. and Zavaleta, E.S., Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biological Conservation. No. 142, pp: 14-32.
  18. Kafash, A.; Ashrafi, S.; Ohler, A.; Yousefi, M.; Malakoutikhah, S.; Koehler, G. and Schmidt, B. R. 2018. Climate change produces winners and losers: Differential responses of amphibians in mountain forests of the Near East. Global Ecology and Conservation. 16, e00471.
  19. Liu, C.; White, M. and Newell, G., 2009. Measuring the accuracy of species distribution models: a review. 18th World IMACS/MODSIM Congress, Carins, Australia.
  20. Phillipes, S.J.; Anderson, R.P. and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling. No. 190, pp: 231-259.
  21. Phillipes, S.J., 2012. A brief tutorial on Maxent, versions: 3.3.3. Available online: http://www.cs. edu /~sch apire/maxent/ (accessed on August 19, 2012).
  22. Sliwa, A.; Ghadirian, T.; Appel, A.; Banfield, L.; Sher Shah, M. and Wacher, T., 2016. Felis The IUCN Red List of Threatened Species 2016: e. T8541A50651884. http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T8541A5 0651884.en.
  23. Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A. and Hannah, L., 2004. Extinction risk from climate change. Nature. No. 427, pp: 145-148.
  24. Torabian, S.; Soffianian, A.; Fakheran, S.; Asgarian, A.; Akbari Feizabadi, H. and Senn, J., 2018. Habitat suitability mapping for sand cat (Felis margarita) in Central Iran using remote sensing techniques. Spatial information research. Vol. 26, No. 1, pp: 11-20. https://doi.org/10.1007/s41324-017-0152-0.
  25. Wiz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A. and NCEAS predicting species distribution working group, 2008. Effects of sample size on the performance of species distribution models. Diversity and Distribution. No. 14, pp: 763-773.