مدل سازی پردازه بوم شناختی گونه آسیب پذیر وزغ تالشی Bufo eichwaldi در جنگل‌های هیرکانی شمال ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست ‏شناسی، دانشکده علوم، دانشگاه گلستان، گرگان، ایران

2 دکتری بیوسیستماتیک جانوری، ایران

چکیده

تغییرات دامنه پراکنش جمعیت‌های دوزیستان از جمله وزغ‌ها عمدتاً در ارتباط با تغییرات محیطی بوده و بقای بسیاری از آن ها توسط عوامل بوم‌شناختی و انسانی در معرض خطر قرار می‌گیرند. وزغ تالشی Bufo eichwaldi یکی از گونه‌های آسیب پذیر با دامنه پراکنش محدود می‌باشد که در شمال ایران و جنوب شرق جمهوری آذربایجان پراکنش یافته است. اخیراً سازمان جهانی حفاظت از منابع طبیعی (IUCN) این گونه را جزو گونه‌های آسیب‌پذیر معرفی کرده که نشان‌دهنده تهدید جمعیت‌ها و زیستگاه‌های این گونه در جنگل‌های هیرکانی حاشیه جنوبی خزر توسط عوامل طبیعی و انسانی است. به همین منظور، در این مطالعه تغییرات و مطلوبیت زیستگاه وزغ تالشی با استفاده از 52 نقطه حضور و 20 متغیر زیستی اقلیمی با روش حداکثر آنتروپی توسط نرم افزار MaxEnt مورد بررسی و تحلیل قرار گرفت. نتایج مدل‌سازی زمان حال وزغ تالشی نشان می‌دهد که پراکنش و زیستگاه مطلوب وزغ تالشی در جنگل‌های هیرکانی جنوب خزر عمدتاً توسط چهار عامل میانگین دمای سردترین فصل، فصلی بودن دما، حداقل دمای سردترین ماه و میزان بارش سردترین فصل تحت تاثیر قرار می‌گیرد. هم چنین نقشه‌ها و مدل‌های حاصل از این مطالعه در مقایسه با نقشه‌های پراکنش این گونه در گذشته، بیانگر قطعه قطعه شدن زیستگاه وزغ تالشی در جنگل‌های هیرکانی، پراکنش لکه‌ای جمعیت‌های آن و در نتیجه کاهش احتمالی جمعیت‌های آن می‌باشد که نشان می‌دهد پراکنش وزغ تالشی درجنگل‌های هیرکانی جنوب خزر، نسبت به دهه‌های اخیر به دلیل عواملی مانند تغییرات اقلیمی و دخالت‌های انسانی دچار انقباض گشته است، که این امر لزوم حفاظت از این گونه ارزشمند را بیش تر از گذشته مورد تاکید قرار می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Ecological niche modeling of vulnerable toad Bufo eichwaldi in the hyrcanian forest of northern Iran

نویسندگان [English]

  • Fatemeh Hejazi 1
  • Haji Gholi Kami 1
  • Zeinolabedin Mohammadi 2
1 Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
2 PhD of Animal biosystematics, Iran
چکیده [English]

Distributional range shift of Amphibian populations especially toads are tightly related to enviromental changes and their survival are threatened by ecological and anthropogenic factors. Talysh toad Bufo eichwaldi occurs in a limited area through the southern margin of the Caspian Sea including north Iran and the southeast of Azerbaijan and has recently considered vulnerable by IUCN Red List of Threatened Species. In this study, 52 occurence records and 20 bioclimatic variables were used for modeling of habitat suitability of B. eichwaldi using maximum entropy algorithm implemented in MaxEnt software package. The results showed that Mean Temperature of Coldest Quarter, Temperature Seasonality, Minimum Temperature of Coldest Month, and Precipitation of Coldest Quarter are the most important predictors for B. eichwaldi suitable habitat. The MaxEnt model indicted that the habitat of B. eichwaldi has been fragmented in the Hyrcanian forest of the south Caspian Sea, which may cause its populaton decline. It is deduced that distributional range of B. eichwaldi in the south of the Caspian Sea experienced contraction due to climate change and human interference comparing to last decades indicating need for conservation programs to protect the Talysh Toad population in the Hyrcanian forest.

کلیدواژه‌ها [English]

  • Habitat suitablity
  • Bufo eichwaldi
  • Amphibian
  • Maxent
  • Climate change
  1. درویش‌نیا، ح.؛ فتحی‌نیا، ب. و بخشی، ی.، 1397. زیست ­شناسی و الگوی غذایی گونه آسیب‌پذیر وزغ تالشی Bufo eichwaldi (Amphibia; Anura; Bufonidae) در ایران. مجله زیست‌شناسی جانوری تجربی. سال 7، شماره 2، صفحات 55 تا 61.
  2. دلاورشیداجلالی، ه.؛ حسینی ­خاله ­جیر، س.؛ جمال زاده، ح. و کمی، ح.، 1396. بررسی تنوع ­زیستی دوزیستان شرق استان گیلان. فصلنامه محیط زیست­ جانوری. سال 9، شماره 2، صفحات 131 تا 140.
  3. رادنژاد، ه.؛ مشتاقی، م.؛ عموئیان، ا. و جمالی ­منش، ا.، 1395. مدل‌سازی توزیع پراکنش آهوی گواتردار (Gazella subgutturosa) در پارک ملی بمو با روش حداکثر آنتروپی MaxEnt. فصلنامه محیط زیست جانوری. سال 8، شماره 2، صفحات 17 تا 24.
  4. پویانی، م.؛ شمس ­اسفندآباد، ب.؛ عباس، ا. و ترنج ­زر، ح.، 1399. مدل‌‌سازی مطلوبیت زیستگاه پلیکان پاخاکستری (Pelecanus crispus) با استفاده از روش حداکثر آنتروپی (MaxEnt) در ایران. فصلنامه محیط ­زیست جانوری. سال 12، شماره 9، صفحات 83 تا 90.
  5. Anderson, B.J.; Akçakaya, H.R.; Araújo, M.B.; Fordham, D.A.; Martinez-Meyer, E.; Thuiller, W. and Brook, W., 2009. Dynamics of range margins for metapopulations under climate change. Proceedings of the Royal Society of London Series B - Biological Sciences. Vol. 276, pp: 1415-1420.
  6. Bartelt, P.E.; Peterson, C.R. and Klaver, R.W., 2004. Sexual differences in the postbreeding movements and habitats selected by Western toads (Anaxyrus boreas) in southeastern Idaho. Herpetologica. Vol. 60, pp: 455-467.
  7. Cushman, S.A., 2006. Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biological Conservation. Vol. 128, pp: 231-240.
  8. DeLong, E.R.; DeLong, D.M. and Clarke-Pearson, D.L., Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. Vol. 44, pp: 837-845.
  9. Eiselt, J. and Schmidtler, J.F., 1973. Froschlurche aus dem Iran unter Berücksichtigung außeriranischer Populations Annalen des Naturhistorischen Museums in Wien. Vol. 77, pp: 181-243.
  10. Elith, J.; Ferrier, S.; Guisan, A.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; Li, J.; Lohmann, L.G.; Loiselle, B.A.; Manion, G.; Moritz, C.; Nakamura, M.; Nakazawa, Y.; McC Overton, J.; Peterson, A.T.; Phillips, S.J.; Richardson, K.; Scachetti-Pereira, R.; Schapire, R.E.; Soberón, J.; Williams, S.; Wisz, M.S. and Zimmermann, N.E., 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. Vol. 29, pp: 129-151.
  11. Giovanelli, J.G.R.; de Siqueira, M.F.; Haddad, C.F.B. and Alexandrino, J., 2010. Modeling a spatially restricted distribution in the Neotropics: how the size of calibration area aects the performance of fve presence-only methods. Ecological modelling. Vol. 221, pp: 215-224.
  12. Goebel, A.M.; Ranker, T.A.; Corn, P.S. and Olmstead, R.C., 2009. Mitochondrial DNA evolution in the Anaxyrus boreas species group. Molecular phylogenetics and Evolution. Vol. 50, pp: 209-225.
  13. Groff, L.A.; Marks, S.B. and Hayes, M.P., 2014. Using ecological niche models to direct rare amphibian surveys: a case study using the oregon spotted frog (Rana pretiosa). Herpetological conservation and biology. Vol. 9, No. 2, pp: 354-368.
  14. Kami, H.G. and Bashirichelkasari, N., 2018. Preliminary study of reproduction in the Talysh toad (Bufo eichwaldi) in northern Iran. Herpetology Notes. Vol. 11, pp: 31-33.
  15. Kami, H.G. and Vakilpoure, E., 1996. Bufo bufo (Common European toad). Herpetological Review. Vol. 27, pp: 148.
  16. Kami, H.G. and Yadollahvand, R., 2014. First Karyological study of the Talysh toad (Bufo eichwaldi) in Mazandaran province, Iran (Anura: Bufonidae). Bulletin of Environment, Pharmacology and Life Sciences. Vol. 3, No. 9, pp: 75-78.
  17. Kidov, A.A. and Matushkina, K.A., 2012. Fertility of the Talysh common toad, Bufo eichwaldi (Amphibia, Anura: Bufonidae) in Azerbaijan. Estestv. Tekhn. Nauki, 5, No. 61, pp: 133-135.
  18. Kidov, A.A.; Pykhov, S.G. and Dernakov, V.V., 2009. New finds of the Talysh common toad (Bufo eichwaldi), meadow lizard (Darevskia praticola) and Iranian racesnake (Elaphe persica) in South-Eastern Azerbaijan. Trudy Ukr.Gerpetol. Obshch. Vol. 2, pp: 21-26.
  19. Kidov, A.; Matushkina, K.A. and Litvinchuk, S.N., 2020. Distribution and Conservation Status of the Eichwald’s Toad, Bufo eichwaldi in Azerbaijan. Russian Journal Herpetology. Vol. 27, No. 1, pp: 11-18.
  20. Kumar, S. and Stohlgren, T.J., 2009. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Environment. Vol. 1, No. 4, pp: 94-98.
  21. Litvinchuk, S.N.; Mazepa, G.O.; Kami, H.G. and Auer M., 2012. Taxonomic status and distribution of common toads in Iran. Journal of Herpetology. Vol. 22, pp: 271-274.
  22. Litvinchuk, S.; Borkin, L.; Skorinov, D.V. and Rosanov, J.M., 2008. A new species of common toads from the Talysh mountains, south-eastern Caucasus: genome size, allozyme, and morphological evidences. Russian Journal Herpetology. 15, pp: 19-43.
  23. Long, R.A.; MacKay, P.; Ray, J.C. and Zielinski, W.J., 2008. Noninvasive Survey Methods for Carnivores. Island Press, Washington, DC, USA. 528 p.
  24. Mann, R.M.; Hyne, R.V.; Choung, C.B. and Wilson, S.P., 2009. Amphibians and agricultural chemicals: review of the risks in a complex environment. Environmental Pollution. Vol. 157, pp: 2903-2927.
  25. Mason, S.J. and Graham, N.E., 2002. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical signicance and interpretation. Quarterly Journal of the Royal Meteorological Vol. 128, pp: 2145-2166.
  26. Матушкина, К.А. and Кидов, А.А., 2013. Репродуктивная биология талышской жабы (Bufo eichwaldi) в Ленкоранской низменности Современная герпетология. Т. 13, Вып. 1/2. С. pp: 27-33.
  27. Mozaffari, O. and Saeidi Moghari, E., 2012. Sexual dimorphism in Bufo eichwaldi snout shape with description of its usage in male-male competition. Russian Journal of Herpetology. Vol. 19, No. 4, pp: 349-351.
  28. Muñoz, M.E.; De Giovanni, R.; de Siqueira, M.F.; Sutton, ; Brewer, P.; Scachetti Pereira, R.; Lange Canhos, D. and Perez Canhos, V., 2011. openModeller: a generic approach to species’ potential distribution modelling. Geoinformatica. Vol. 15, pp: 111-135.
  29. Phillips, S.J.; Anderson, R.P. and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling. Vol. 190, pp: 231-259.
  30. Phillips, S.J.; Dudík, M. and Schapire, R.E., 2018. Maxent software for modeling species niches and distributions (Version 3.4.1). Available online: http://biodiversityamnh.org/open_source/maxent/ (Accessed on 13 September 2018).
  31. Phillips, S.J. and Dudik, M., 2008. Modeling of Species Distributions with Maxent New Extensions and a Comprehensive Evaluation. Ecography. 31, pp: 161-175.
  32. Pilliod, D.S.; Peterson, C.R. and Ritson, P.I., 2002. Seasonal migration of Columbia spotted frogs (Rana luteiventris) among complementary resources in a high mountain Canadian Journal of Zoology. Vol. 80, pp: 1849-1862.
  33. R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R.org/
  34. Recuero, E.; Canestrelli, D.; Vörös, J.; Szabó, K.; Poyarkovd, N.A.; Arntzen, J.W.; Crnobrnja-Isailovic, J.; Kidov, A.A.; Cogalniceanu, D.; Caputo, F.P.; Nascetti, G. and Martínez-Solano, I., 2012. Multilocus species tree analyses resolve the radiation of the widespread Bufo bufo species group (Anura, Bufonidae). Molecular Phylogenetics and Evolution. Vol. 62, pp: 71-86.
  35. Santos, X.; Brito, J.C.; Sillero, N.; Pleguezuelos, J.M.; Llorente, G.A.; Fahd, S. and Parellada, X., 2006. Inferring habitat-suitability areas with ecological modelling techniques and GIS: A contribution to assess the conservation status of Vipera Biological conservation. Vol. 130, pp: 416-425.
  36. Sattler, T.; Bontadina, F.; Hirzel, A.H. and Arlettaz, R., 2007. Ecological niche modelling of two cryptic bat species calls for a reassessment of their conservation status. Journal of Applied Ecology. Vol. 44, pp: 1188-1199.
  37. Semlitsch, R.D. and Bodie, J.R., 2003. Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. Conservation Biology. 17, pp: 1219-1228.
  38. Shepard, D.B. and Burbrin, F.T., 2009. Phylogenetic and demographic effects of Pleistocene climate fluctuations in amontane salamander, Plethodon fourchensis. Molecular Vol. 18, pp: 2243-2262.
  39. Stuart, S.; Chanson, J.S. and Cox, N.A., 2004. Status and trends of amphibian declines and extinctions worldwide. Science. Vol. 306, pp: 1783-1786.
  40. Thorn, J.S.; Nijman, V.; Smith, D. and Nekaris KAI., 2009. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Diversity and Distributions. Vol. 15, pp: 289-298.
  41. Tuck, R.G., 1975. Bufo bufo (Common toad). Herpetological Review. Vol. 6, pp: 115.
  42. Velieva, Z.D., 1981. On new records and ecology of the common toad in Azerbaijan, in: I. S. Darevsky (ed.). The Problems of Herpetology, Leningrad. 30 p [in Russian].
  43. Whittaker, K.; Koo, M.S.; Wake, D.B. and Vredenburg V.T., 2013. Global Declines of Amphibians. Encyclopedia of Biodiversity. Vol. 3, pp: 691-699.
  44. Williams, N.S.G.; Schwartz, M.W.; Vesk, P.A.; McCarthy, M.A.; Hahs, A.K.; Clemants, S.E.; Corlett, R.T.; Duncan, R.P.; Norton, B.A.; Thompson, K. and McDonnell, M.J., 2009. A conceptual framework for predicting the effects of urban environments on floras. Journal of Ecology. Vol. 97, pp: 4-9.
  45. Zanini, F.; Pellet, J. and Schmidt, B.R., The transferability of distribution models across regions: an amphibian case study. Diversity and Distributions. Vol. 15, pp: 469-480.
  46. Zhordaniya, R.G., 1960. List of collections of amphibians of Zoological Department of S.N. Dzhanashia State Museum of Georgia AN GrSSR. Trudy Gosudarstvennogo Muzeya Gruzii. Vol. 20-A, pp: 159-179.