اثر گرمایش جهانی بر سفیدشدگی اکوسیستم های مرجانی در برخی جزایر خلیج ‌فارس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست شناسی دریا، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

2 پژوهشکده اکولوژی خلیج فارس و دریای عمان، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، بندرعباس، ایران

چکیده

مرجان­ های آبسنگ ساز از لحاظ زیست­ شناسی بخش مهم و متنوعی از اکوسیستم را ایجاد می‌کنند. جمعیت مرجان­ های هرماتیپیک سرتاسر دنیا در پاسخ به عوامل مختلف استرسی ازجمله افزایش دمای سطحی اقیانوس ­ها در حال کاهش می ­باشند. گرم شدن دمای سطح دریا منجر به متلاشی شدن رابطه هم زیستی بین مرجان و هم زیست آن و خروج هم زیست­ های جلبکی از مرجان و از بین رفتن رنگ آن­ ها می­ گردد. بالاترین آستانه سفید شدگی شناخته ‌شده در دنیا، در جوامع مرجانی خلیج‌ فارس دیده‌ شده است. این تحقیق به منظور بررسی وضعیت بخشی از مرجان ­های خلیج‌فارس، از طریق مشاهده­ مستقیم و عکس‌برداری از ژانویه 2010 (دی 1388) تا سپتامبر 2019 (شهریور 1398) در جزایر خارک، هندورابی، کیش و لارک صورت گرفت. با توجه به مشاهدات انجام شده، سلامت مرجان­  ها در این فاصله زمانی به‌شدت افت کرده است و تنها در بخش­ هایی از جزایر لارک و هندورابی و خارک، کم تر از  10% مرجان زنده‌ یافت می‌شود. با وجود این که مرجان­ های خلیج‌فارس در مقایسه با مرجان­ های سایر مناطق در سراسر دنیا، مقاومت بسیار زیادی نسبت به درجه حرارت ­های بالا و تغییر اقلیم نشان داده‌اند، زمانی که دما از آستانه تحمل آن­ ها فراتر رود، این مرجان ­ها نیز سفید خواهند شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of global warming on bleaching of coral ecosystems in some islands of the Persian Gulf

نویسندگان [English]

  • Pegah Javid 1
  • Siamak Behzadi 2
  • Mohammad Sharif Ranjbar 1
1 Department of Marine biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
2 Department of Marine Biology and Stock Assessment, Persian Gulf & Oman Sea Ecological Research Institute, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
چکیده [English]

Coral reefs provide the important and diverse part of ecosystem biologically. The population of hermatypic coral is declining around the world, in response to various stress factors including increasing sea surface temperatures. The increase of sea surface temperature leads to the collapse of symbiosis life between coral and its symbiont; so the algal colonies leave corals and results in the loss of corals’ colors. The highest threshold of bleaching has been observed in the coral reefs of the Persian Gulf. In this study, the status of the Persian Gulf coral reefs is shown in the Khark, Hendourabi, Kish and Larak Islands from January 2010 to September 2019 by direct observation and photographing. According to the observations, the health of corals has fallen sharply over this period, and there is less than 10% live coral in some parts of the Larak and Hendorabi islands. Despite the exceptional capacity of the Persian Gulf corals to survive over high temperatures compared to other coral reefs, when the temperature exceeds the tolerance threshold, these corals will also be bleached.

کلیدواژه‌ها [English]

  • Global warming
  • Coral reefs
  • Persian Gulf
  • Bleaching
  1. سینایی، م. و بلوکی، م.، 1396. ارزیابی کارآیی استفاده از روش بیوراک در کاشت و پرورش مرجان گونه Acropora calthrata در خلیج چابهار. فصلنامه محیط زیست جانوری. دوره 10، شماره 4، صفحات 549 تا 558.
  2. لقمانی، م. و صادقی، پ.، 1394. بررسی پراکنش و تنوع مرجان‌های سخت (Hard Corals) در خلیج چابهار (دریای عمان). فصلنامه محیط زیست جانوری. دوره 7، شماره 4. صفحات 105 تا 116.
  3. Alvarez-Filip, L.; Carricart-Ganivet, J.P.; Horta-Puga, G. and Iglesias-Prieto, R., 2013. Shifts in coral-assemblage composition do not ensure persistence of reef functionality. Sci Rep. Vol. 3, p: 3486.
  4. Angelini, C.; Altieri, A.H.; Silliman, B.R. and Bertness, M.D., 2011. Interactions among foundation species and their consequences for community organization, biodiversity, and conservation. BioScience. Vol. 61, No. 10, pp: 782-789.
  5. Anthony, K.R.; Kline, D.I.; Diaz-Pulido, G.; Dove, S. and Hoegh-Guldberg, O., 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci. Vol. 105, No. 45, pp: 17442-17446.
  6. Baker, A.C.; Starger, C.J.; McClanahan, T.R. and Glynn, P.W., 2004. Corals' adaptive response to climate change. Nature. Vol. 430, No. 7001, pp: 741-741.
  7. Coles, S.L. and Riegl, B.M., 2013. Thermal tolerances of reef corals in the Gulf: A review of the potential for increasing coral survival and adaptation to climate change through assisted translocation. Mar Pollut Bull. Vol. 72, No. 2, pp: 323-332.
  8. Coles, S.L., 2003. Coral species diversity and environmental factors in the Arabian Gulf and the Gulf of Oman: a comparison to the Indo-Pacific region. Atoll Research Bulletin.
  9. Connell, J.H.; Hughes, T.P. and Wallace, C.C., 1997. A 30‐year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol Monogr. Vol. 67, No. 4, pp: 461-488.
  10. Darling, E.S.; Alvarez‐Filip, L.; Oliver, T.A.; McClanahan, T.R. and Côté, I.M., 2012. Evaluating life history strategies of reef corals from species traits. Ecol Lett. Vol. 15, No. 12, pp: 1378-1386.
  11. DeCarlo, T.M.; Cohen, A.L.; Wong, G.T.; Davis, K.A.; Lohmann, P. and Soong, K., 2017. Mass coral mortality under local amplification of 2 C ocean warming. Sci Rep. Vol. 7, p: 44586.
  12. Eakin, C.M.; Liu, G.; Gomez, A.M.; De La Cour, J.L.; Heron, S.F.; Skirving, W.J.; Geiger, E.F.; Tirak, K.V. and Strong, A.E., 2016. Global coral bleaching 2014-2017: status and an appeal for observations. Reef Encounter. Vol. 31, No. 1, pp: 20-26.
  13. Gattuso, J.P.; Magnan, A.; Billé, R.; Cheung, W.W.L.; Howes, E.L.; Joos, F.; Allemand, D.; Bopp, L.; Cooley, S.R.; Eakin, C.M.; Hoegh-Guldberg, O.; Kelly, R.P.; Pörtner, H.O.; Rogers, A.D.; Baxter, J.M.; Laffoley, D.; Osborn, D.; Rankovic, A.; Rochette, J.; Sumaila, U.R.; Treyer, S. and Turley, C., 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science. Vol. 349, No. 6243, p: aac4722.
  14. Gilmour, J.P.; Smith, L.D.; Heyward, A.J.; Baird, A.H. and Pratchett, M.S., 2013. Recovery of an isolated coral reef system following severe disturbance. Science. Vol. 340, No. 6128, pp: 69-71.
  15. Glynn, P.W., 1993. Coral reef bleaching: ecological perspectives. Coral reefs. Vol. 12, No. 1, pp: 1-17.
  16. Grandcourt, E.M., 2008. Corals and coral reefs. In Marine environment and resources of Abu Dhabi. Abu Dhabi Environment project. pp: 120-161
  17. Hadaidi, G.; Röthig, T.; Yum, L.K.; Ziegler, M.; Arif, C.; Roder, C.; Burt, J. and Voolstra, C.R., 2017. Stable mucus associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas. Sci Rep. Vol. 7, No. 1, pp: 1-11.
  18. Hoegh-Guldberg, O., 1999. Climate change, coral bleaching and the future of the world's coral reefs. Mar freshwater res. Vol. 50, No. 8, pp: 839-866.
  19. Hughes, T.P.; Kerry, J.T.; Álvarez-Noriega, M.; Álvarez-Romero, J.G.; Anderson, K.D.; Baird, A.H.; Babcock, R.C.; Beger, M.; Bellwood, D.R.; Berkelmans, R. and Bridge, T.C., 2017. Global warming and recurrent mass bleaching of corals. Nature. Vol. 543, No. 7645, pp.373-377.
  20. Hume, B.; D’angelo, C.; Burt, J.; Baker, A.C.; Riegl, B. and Wiedenmann, J., 2013. Corals from the Persian/ Arabian Gulf as models for thermotolerant reef builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar pollut bull. Vol. 72, No. 2, pp: 313-322.
  21. Kwon, E.Y.; Primeau, F. and Sarmiento, J.L., 2009. The impact of remineralization depth on the air-sea carbon balance. Nat Geosci. Vol. 2, No. 9, pp: 630-635.
  22. Logan, C.A.; Dunne, J.P.; Eakin, C.M. and Donner, S.D., 2014. Incorporating adaptive responses into future projections of coral bleaching. Glob Chang Biol. Vol. 20, No. 1, pp: 125-139.
  23. Moberg, F.; Nyström, M.; Kautsky, N.; Tedengren, M. and Jarayabhand, P., 1997. Effects of reduced salinity on the rates of photosynthesis and respiration in the hermatypic corals Porites lutea and Pocillopora damicornis. Mar Ecol Prog Ser. Vol. 157, pp: 53-59.
  24. Nezlin, N.P.; Polikarpov, I.G. and Al-Yamani, F., 2007. Satellite-measured chlorophyll distribution in the Arabian Gulf: Spatial, seasonal and inter-annual variability. IJOO. Vol. 2, No. 1, pp:139-156.
  25. Oliver, J.K.; Berkelmans, R. and Eakin; C.M., 2009. in Ecological Studies: Analysis and Synthesis (eds van Oppen, M. J. H. & Lough, J. M.) pp: 21-39
  26. Olsen, K.; Ritson-Williams, R.; Ochrietor, J.D.; Paul, V.J. and Ross, C., 2013. Detecting hyperthermal stress in larvae of the hermatypic coral Porites astreoides: the suitability of using biomarkers of oxidative stress versus heat-shock protein transcriptional expression. Mar biol. Vol. 160, No. 10, pp: 2609-2618.
  27. Reyes-Bermudez, A.; Lin, Z.; Hayward, D.C.; Miller, D.J. and Ball, E.E., 2009. Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora. BMC Evol Biol. Vol. 9, No. 1, pp: 1-12.
  28. Sheppard, C.R.C.; Price, ARG. and Roberts, C.J., 1992. Marine ecology of the Arabian area. Patterns and processes in extreme tropical environments. Academic Press: London. 359 p.
  29. Shinzato, C.; Shoguchi, E.; Kawashima, T.; Hamada, M.; Hisata, K.; Tanaka, M.; Fujie, M.; Fujiwara, M.; Koyanagi, R.; Ikuta, T. and Fujiyama, A., 2011. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature. Vol. 476, No. 7360, pp: 320-323.
  30. Spalding, M.D. and Brown, B.E., 2015. Warm-water coral reefs and climate change. Science. Vol. 350, No. 6262, pp: 769-771.
  31. Steinacher, M.; Joos, F.; Frölicher, T.L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S.C.; Gehlen, M.; Lindsay, K.; Moore, J.K. and Schneider, B., 2010. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences. Vol. 7, No. 3, pp: 979-1005.
  32. Wilkinson, C., 2004. Status of coral reefs of the world: 2004. Australian Institute of Marine Science. Townsville, Australia.