تخمین ساختار تنوع، تنگنای ژنتیکی سه جمعیت گوسفند بومی کشور عراق با استفاده از نشانگرهای میکروساتلایت

نویسندگان

1 گروه فن آورهای پرورش دام، دانشکده فنی المسیب، دانشگاه فنی الفرات الاوسط، بابل، عراق

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

چکیده

هدف از پژوهش حاضر، تخمین شاخص ­های مولکولی، ساختار ژنتیکی، تنوع و تنگنای ژنتیکی در سه جمعیت گوسفند بومی عراق (عواسی، نعیمی و عرابی ) می­ باشد. بدین منظور، از تعداد 12 جایگاه میکروساتلایت با توزیع استقرارکروموزمی (1، 2، 5، 9 و 14 ) وطبق توصیه فائو و انجمن ژنتیک جهانی استفاده شد. تعداد 60 نمونه خون کامل حیوان (نر و ماده ) به صورت تصادفی از جمعیت های مربوطه در استان های کربلا، نجف و بابل تهیه شد. استخراج DNA، تعیین کمیت و کیفیت، واکنش زنجیره پلی مراز و الکتروفورز و عکس برداری با روش ­های متداول رایج انجام شد. از روش Allele Binning نیز برای تصحیح ژنوتیپ­ ها و به حد اقل رساندن خطای قرائت ژنوتیپ استفاده شد. تعداد بیش از 9 نوع شاخص آماری مولکولی (فروانی اللی، تعداد آلل­ های مشاهده شده و مورد انتظار، هتروزایگوستی مشاهده شده و مورد انتظار، محتوای چند شکلی، ضریب رایت، شاخص شانون، شاخص ­های آماره F و فاصله ژنتیکی و وضعیت باتلنگ ) بررسی شد. نتایج در دو بخش بررسی مطلوبیت جایگاه میکروساتلایت و ارزیابی تنوع ژنتیکی درون و بین جمعیتی ارائه شد. نتایج بخش اول نشان داد که بیش ترین پلی مورفیسم در نشانگرهای OarFCB226 و TGLA13 و بقیه کم ترین  پلی مورفیسم را ایجاد می ­کند. نتایج بخش دوم نشان داد که به ترتیب نژاد عواسی و عرابی بیش ترین و کم ترین تنوع را دارد. بیش ترین فاصله ژنتیکی بین دو نژاد عرابی و نعیمی و کم ترین بین نعیمی وعواسی بود. منحنی L-Shape باتلنک نشان داد که جمعیت­ های مورد مطالعه در تنگنای ژنتیکی قرار دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Diversity Structure, Genetic Bottleneck of Three Iraqi Sheep Breeds using Microsatellite Markers

نویسندگان [English]

  • Hayder Raheem Alnajm 1
  • Sadegh Alijani 2
  • Arash Javanmard 2
  • Seyed Abbas Rafat 2
  • Karim Hasanpur 2
1 1 Department of Animal Production Techniques, Al-Musaib Technical College, Al-Furat Al-Awsat Technical University, Babylon, Iraq
2 Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
چکیده [English]

  The aim of the present study was to estimate the molecular characteristics, structure, genetic diversity and genetic bottlenecks in the three sheep populations native to Iraq (Awassi, Naaimi, and Arabi). For this purpose, 12 microsatellite loci with chromosomal distribution distributions (1, 2, 5, 9 and 14) were used according to the recommendations of FAO and the International Society for Animal Genetics (ISAG). Sixty samples of whole animal blood (both sex) were randomly collected from the relevant populations in Karbala, Najaf and Babel provinces. The genomic DNA extraction, quality and quantity, preparation of PCR, electrophoresis photography was done accordingly based on standard available methods. After observation of raw genotype per investigated loci, allele binning was done for minimizing genotyping errors. More than 9 types of molecular statistical indices (allele frequencies, observed and effective number of alleles, observed and expected heterozygosity, PIC, Wright coefficient, Shannon index, F-statistical indices, genetic distance and the bottleneck) Checked out. The results were presented in two parts: evaluation of microsatellite loci utility and evaluation of genetic diversity within and between the population. The results of the first part showed that the highest polymorphism was observed in OarFCB226 and TGLA13 markers and the rest had the lowest polymorphism. The results of the second part showed that the Awaasi and Arabi breed have the highest and lowest diversity, respectively. The highest genetic distance was between Arabi and Naaimi breeds and the smallest was between Naaimi and Awassi breeds. Furthermore, bottleneck L-Shape curve showed that the studied populations are in a genetic predicament.

کلیدواژه‌ها [English]

  • Genetic diversity
  • Microsatellite markers
  • Native Iraqi sheep
  • Bottleneck genetics
  1. Aldona, K. and Katarzyna, P., 2011. Characteristics of the genetic structure of native sheep breeds. Annals of Animal Science. Vol. 11, No, 3, pp: 371-382.
  2. Alkass, J.E. and Juma, K.H., 2005. Small ruminant breeds of Iraq. Characterization of small ruminant breeds in West Asia and North Africa. Vol. 15, No. 1, pp: 63-101. ‏
  3. Al-Mourrani, W.; Mahamoud, A.K. and Al-Wahab, R.M., 1980. Animal Management. Baghdad, Iraq. 18, No. 3, pp: 35-45 (In Arabic).
  4. Al-Rawi, A.A.; Al-Haboby, A.H. and Al-Salman, M.H., 1996. Small ruminant breeding and reproductive physiology research and technology transfer in Iraq (Mourrani, W. and Haddad, N., ed.). ICARDA-West Asia Regional Program, Amman: Jourdan. 15, No. 1972, pp: 23-41.
  5. Amaral, A.J.; Megens, H.J.; Kerstens, H.H.; Heuven, H.C.; Dibbits, B.; Crooijmans, R.P.; den Dunnen, J.T. and Groenen, M.A., 2009. Application of massive parallel sequencing to whole genome SNP discovery in the porcine genome. BMC Genomics. Vol .10, No. 1, pp: 374.
  6. Ayied, A.Y.; Al-Hello, M.F. and Al-Jassim, E.F., 2011. Growth patterns of Arabi sheep in South of Iraq. Journal of Tikrit University for Agricultural Sciences. Vol. 11, No. 2.
  7. Barker, J.S.F., 1999. Conversation of livestock breed diversity. Animal Genetic Resources Information. Vol. 25, No. 1999, pp: 33-43.
  8. Bichard, M.; Pease, A.H.R.; Swales, P.H. and Ozkutuk, K., 1973. Selection in a population with overlapping generations. Animal Production. Vol. 17, No. 3, pp: 215-227.
  9. Bishop, M.D.; Kappes, J.W.; Keele, R.T.; Stone, S.L.F. and Sunde, N.Z., 1994. A genetic linkage map for cattle. Genetics. Vol. 136, No. 2, pp: 619-639.
  10. Botstein, R.; White, L.; Skolnik, M. and Davis, R.W., 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. e American Society of Human Genetics. Vol. 32, No. 3, pp: 314.
  11. Brezinskly, S.J.; Kemp, A.J. and Teale, A., 1993. Five polymorphic bovine microsatellites. Animal Genetic. Vol. 24, pp: 75-76.
  12. Buchanaen, C.; Gailoway, S.M. and Crawford, A.M., 1994. Ovine microsatellites at the OarFCB5, OarFCBl9, OarFCB20, OarFCB48, OarFCBl29 and OarFCB226 loci. Animal Genetic. Vol. 25, pp: 51-52.
  13. Evanno, G.; Regnaut, S. and Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular ecology. Vol. 14, No. 8, pp: 2611-2620.
  14.  FAO. 2014. FAO works to increase food security in Iraq. 2014-2015 Strategic Response Plan for Iraq. Rome. Italy. Vol. 7, pp: 850.
  15.  FAO. 2018. FAOSTAT website, FAO Global Statistical Yearbook, FAO Regional Statistical Yearbooks. Rome: Italy. Vol. 5, pp: 978.
  16. Gahlot, K.; Purva, M.; Maherchandani, S. and Kashyap, S.K., 2018. Assessment of Genetic Diversity in Chokla Sheep Breed of Rajasthan Using Microsatellite Markers. International Journal of Livestock Research. Vol. 65, No. 3, pp: 185-192.
  17. Georges, M. and Massey, J., 1992. Polymorphic DNA markers in Bovidae, (World Intellectual Property Org., Geneva). WO Publ. No. 92, pp: 13120.
  18. Hedrick, P.W., 1995. Gene flow and genetic restoration: The Florida panther as a case study. Conservation Biology. Vol. 9, No. 5, pp: 996-1007.
  19. Hristova, D.; Metodiev, S.; Nikolov, V.; Vassilev, T. and Todorovska, E., 2017. Genetic variation of Bulgarian Autochthonous Sheep Breeds using microsatellite marker. Genetika. Vol. 49, No. 1, pp: 247-258.
  20. Hussain, T.; Musthafa, M.M.; Babar, M.E.; Shaheen, M. and Marikar, F.M., 2018. Molecular genetic diversity and relationship of indigenous sheep breeds of Pakistan based on nuclear microsatellite loci. Veterinary Review. Vol. 30, No. 1, pp: 54-58.
  21. Iniguez, L. and Hilali, M., 2009. Evaluation of Awassi genotypes for improved milk production in Syria. Livestock Science. Vol. 120, No. 3, pp: 232-239.
  22. Jawasreh, K.I.; Ababneh, M.M.; Ismail, Z.B.; Younes, A.M. and Al Sukhni, I., 2018. Genetic diversity and population structure of local and exotic sheep breeds in Jordan using microsatellites markers, Veterinary world. Vol. 11, No. 6, pp: 778-781.
  23. Kappes, S.M.; Keele, J.W.; Stone, R.T.; McGraw, R.A.; Sonstegard, T.S.; Smith, T.P.L.; Lopez-Corrales, N.L. and Beattie, C.W., 1997. A second-generation linkage map of the bovine genome. Genome Research. Vol. 7, No. 3, pp: 235-249.
  24. Kovacsl, E.; Tempfi, K.; Shannon, A.; Zenke, P.; Maroti Agots, A.; Safair, L.; Bali-Papp, A. and Gaspardv, A., 2019. STR diversity of a Historical sheep breed bottlenecked, the Cokta. The Journal of Animal and Plant Sciences. Vol. 29, No. 1, pp: 41-47.
  25. Maddox, J.F.; Kizanne, P.D.; Allan, M.; Crawford, D.J.; Hulme, D.V.; Edmond, P.C.; Bradley, A. F.; Ken, J.B.; Noelle, E.C.; Nina, K.; Christopher, D.; Riffkin, R.D.; Stephen, S.; Moore, K.G.; Dodds, J.M.; Lumsden, T.C.; Stijn, S.H.; Phua, D.L.; Adelson, H.R.; Burkin, J.E.; Broom, J.B.; Lisa, C.; William, T.; Cushwa, E. G.; Susan, M.; Galloway, B.H.; Rachel, J.H.; Stefan, H.; Hannah, M.; Henry, J.F.; Medrano, K.A.; Paterson, L.S.; Roger, T. and Stone, B.H., 2001. An Enhanced Linkage Map of the Sheep Genome Comprising More Than 1000 Loci. Article published on-line before print: Genome Research. Vol. 1, No. 7, pp: 1275-1289.
  26. Maurico, J.; De Gortari, T.; Brad, A.; Freking, L.; Rachel, P.; Cuthbertson, S.M.; Kappes, J. W.; Keele, R.; Roger, T.; Stone, K.A.; Leymaster, L.K.; G., Dodds, A.M.; Crawford, C. and Beattie, W., 1997. A second generation linkage map of the sheep genome. Mammalian Genome. Vol. 9, No. 3, pp: 204-209.
  27. Miller, S.A.; Dykes, D.D. and Polesky, H.F., 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research. Vol. 16, No. 3, pp: 1215.
  28. Ministry of Planning. 2016. Survey of Animal Resources in Iraq. Directorate of Agricultural Statistics Central Statistical Bureau, Baghdad. Iraq. Vol. 78, No. 4, pp: 213-218 (In Arabic).
  29. Samadi Shams, S.; Zununi Vahed, S.; Soltanzad, F.; Kafil, V.; Barzegari, A.; Atashpaz, S. and Barar, J., 2011. Highly Effective DNA Extraction Method from Fresh, Frozen, Dried and Clotted Blood Samples. BioImpacts. Vol. 1, No. 3, pp: 183.
  30. Shannon, C.E. and Weaver, W., 1949. Mathematical theory of communication. 1st Edn. University of Illinois Press, Urbana. Vol. IL10, pp: 0252725484.
  31. Sheriff1, O. and Alemayehu, K., 2017. Genetic diversity studies using microsatellite markers and their contribution in supporting sustainable sheep breeding programs: A review. Sheriff and Alemayehu, Cogent Food and Agriculture. Vol. 4, No. 1, pp: 1459062.
  32. Surekha, J.; PunyaKumari, B.; Gnana Prakash, M.; Suresh, J. and Bharathi, G., 2018. A study of genetic Variation in Nellore Sheep using Microsatellite markers. Indian journal of Small Ruminants. Vol. 24, No. 2, pp: 215-220.
  33. Tabbaa, M.J.; Alnimer, M.A.; Shboul, M. and Titi, H.H., 2008. Reproductive characteristics of Awassi ewes mated artificially or naturally to Jordanian or Syrian Awassi rams. Animal Reproduction. Vol. 5, No. 1, pp: 23-29.
  34. Vaimand, R.; Osta, D.; Mercierc, G. and Lleveziei, H., 1992. Characterization of five new bovine dinucleotide repeats. Animal Genetic. Vol. 23, No. 6, pp: 537-541.
  35. Van der Westhuizen, L.; Magwaba, T.; Grobler, J.P.; Bindeman, H.; Du-Plessis, C.; Van Marle-Köster, E. and Neser, F.W., 2019. Genetic variability in a population of Letelle sheep in South Africa. South African Journal of Animal Science. Vol. 49, No. 2, pp: 281-289.
  36. Yilmaz, O., 2016. Power of different microsatellite panels for paternity analysis in sheep. Animal Science Papers and Reports. Vol. 34, No. 2, pp: 155-164.