تاثیر سطوح مختلف پروتئین برای پرورش میگوی سفید غربی (Penaeus vannamei Boone, 1931) در سیستم با تعویض آب محدود

نوع مقاله : مقاله پژوهشی

نویسنده

گروه علوم و مهندسی شیلات، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت، ایران

چکیده

سیستم با تعویض آب محدود سیستمی سازگار با محیط زیست بوده که اهداف آبزی پروری پایدار را دنبال می کند و در آبزی پروری نوین به کارگیری می شود. در مطالعه حاضر تاثیر سطوح مختلف پروتئین جیره بر کیفیت آب، عملکرد رشد و ترکیبات بیوشیمیایی توده میکروبی در سیستم با تعویض آب محدود بررسی شد. نوجوان های میگوی سفید غربی با میانگین 2/5 گرم در مخازن فایبرگلاس با حجم آب 160 لیتر و تراکم 1 فرد در لیتر به مدت 5 هفته مورد بررسی قرار گرفتند. چهار تیمار آزمایشی با جیره های مختلف پروتئین شامل 40، 36، 33 و 30 درصد در سیستم با تعویض آب محدود در نظر گرفته شد. نتایج مطالعه حاضر نشان داد، مقادیر اکسیژن محلول، pH، نیتروژن آمونیاکی کل (1/11 میلی گرم در لیتر) در تیمار جیره غذایی با 40 درصد پروتئین بالاتر است. عملکرد رشد در تیمارجیره های 33 و 36 درصد پروتئین اختلاف معنی داری با تیمار جیره های 30 و 40 درصد نشان داد (0/05>P)، به طوری که مقادیر بالاتری در تیمار جیره های 33 و 36 مشاهده شد. ترکیبات بیوشیمیایی توده میکروبی تحت تاثیر پروتئین های مختلف جیره قرار گرفت (0/05>P) و مقادیر بالاتر چربی (2/17%) و خاکستر (35/44 درصد وزن خشک) در تیمار جیره غذایی با 30 درصد پروتئین مشاهده شد. طبق مطالعه حاضر مشخص شد که پروتئین های مختلف جیره بر کیفیت آب، عملکرد رشد میگوی سفید غربی و ترکیبات توده میکروبی تاثیر گذار است و مقادیر بهینه در جیره 33 و 36 درصد پروتئین می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of different protein levels on Pacific white shrimp (Penaeus vannamei Boone, 1931) farming in a system with limited water exchange

نویسنده [English]

  • Mohammad Hossein Khanjani
Department of Fisheries Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran
چکیده [English]

Limited water exchange system is an environmentally friendly system that pursues the goals of sustainable aquaculture and is used in modern aquaculture. In the present study, the effect of different levels of dietary protein on water quality, growth performance and biochemical composition of microbial mass in the system with limited water exchange was investigated. Western white shrimp juveniles with an average weight of 2.5 g were studied in fiberglass tanks with a volume of 160 liters and a density of 1 fish per liter for 5 weeks. Four experimental treatments with different levels of dietary protein including 40, 36, 33 and 30% were considered in the system with limited water exchange. The results of the present study showed that the amounts of dissolved oxygen, pH, total ammonia nitrogen (1.11 mg/l) are higher in the treatment of diet with 40% protein. Growth performance in 33% and 36% protein showed a significant difference compared to 30% and 40% level of protein (P<0.05), so that higher values were observed in 33% and 36% protein treatments. The biochemical composition of the microbial mass was affected by different dietary proteins (P<0.05) and higher amounts of lipid (2.17%) and ash (35.44% of dry weight) were observed in the treatment with 30% protein. According to the present study, it was found that different dietary proteins affect water quality, growth performance of western white shrimp and microbial mass composition and the optimal values in the diet are 33% and 36% of protein.

کلیدواژه‌ها [English]

  • Diet
  • Protein
  • Pacific White Shrimp
  • Limited Water Exchange System
  • Biofloc
  1. Anand, S.; Sudhayam, P.; Kumar, S.; Kohli, M.P.; Sundaray, J.K. and Sinha, A., 2017. Dietary biofloc supplementation in black tiger shrimp, Penaeus monodon: effects on immunity, antioxidant and metabolic enzyme activities. Aquaculture Research. Vol. 48, pp: 4512-4523.
  2.  AOAC. 2005. Official methods of analysis. Association of official analytical chemists (p. 245). Arlington, VA: Association of Official Analytical Chemists, Inc.
  3. Avnimelech, Y., 2006. Bio-filters: The need for a new comprehensive approach. Aquacultural Engineering. Vol. 34, pp: 172-178.
  4. Avnimelech, Y., 2009. Biofloc Technology: A Practical Guide Book. World Aquaculture Society, Baton Rouge, Louisiana, USA. 182 p.
  5. Avnimelech, Y., 2015. Biofloc Technology. A Practical Guidebook, 3rd edn. The World Aquaculture Society, Baton Rouge, LA.
  6. Ballester, E.; Abreu, P.; Cavalli, R.; Emerenciano, M.; De Abreu, L. and Wasielesky, W. Jr., 2010. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition. Vol. 16, pp: 163-172.
  7. Crab, R.; Kochva, M.; Verstraete, W. and Avnimelech, Y., 2009. Bioflocs technology application in over-wintering of tilapia. Aquaculture Engeneering. Vol. 40, pp: 105-112.
  8. Ebeling, J.M.; Timmons, M.B. and Bisogni, J.J., 2006. Engineering analysis of thestoichiometry of photoautotrophic, autotrophic, and heterotrophic removal ofammonia–nitrogen in aquaculture systems. Aquaculture. Vol. 257, pp: 346-358.
  9. El-Sayed, A.F.M., 2020. Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Reviews in Aquaculture. pp: 1-30. Doi: 10.1111/raq.12494.
  10. Emerenciano, M.; Ballester, E.L.; Cavalli, R.O. and Wasielesky, W., 2012. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research. Vol. 43, pp: 447-457.
  11. Esparza-Leal, H.M.; Ponce-Palafox, J.T.; Alvarez-Ruiz, P.; Lopez-Alvarez, E.S.; Vazquez-Montoya, N. and Lopez-Espinoza, M., 2020. Effect of stocking density and water exchange on performance and stress tolerance to low and high salinity by Litopenaeus vannamei postlarvae reared with biofloc in intensive nursery phase. Aquaculture International. pp: 1-11.
  12. FAO (Food and Agriculture Organization of the United Nations). 2020. Global Aquaculture Production 1950–2018. http://www.fao.org/fishery/statistics/global-aquaculture-production/query/en
  13. Fourooghifard, H.; Matinfar, A.; Mortazavi, M.S.; Roohani Ghadikolaee, K. and Roohani Ghadikolaee, , 2018. Nitrogen and phosphorous budgets for integrated culture of whiteleg shrimp Litopenaeus vannamei with red seaweed Gracilaria corticata in zero water exchange system. Iranian Journal of Fisheries Sciences. Vol. 17, pp: 471-486.
  14. Gong, H.; Jiang, D.; Alig, F. and Lawrence, A.L., 2012. Effects of dietary protein level and source on the growth and survival of two genetic lines of specific-pathogen-free Pacific white shrimp, Penaeus vannamei. Aquaculture. Vol. 29, pp: 118-123.
  15. Hamidoghli, A.; Yun, H.; Shahkar, E.; Won, S.; Hong, J. and Bai, S.C., 2018. Optimum dietary protein-to-energy ratio for juvenile whiteleg shrimp, Litopenaeus vannamei, reared in a biofloc system. Aquaculture Research. Vol. 49, pp: 1875-1886.
  16. Hari, B.; Kurup, B.M.; Varghese, J.T.; Schrama, J.W. and Verdegem, M.C.J., 2006. The effect of carbohydrate addiction on water quality and the nitrogen budget in extensive shrimp culture systems. Aquaculture. Vol. 252, pp: 248-263.
  17. Huang, J.; Yang, Q.; Ma, Z.; Zhou, F.; Yang, L. and Deng, J., 2017. Effects of adding sucrose on Penaeus monodon (Fabricius, 1798) growth performance and water quality in a biofloc system. Aquaculture Research. Vol. 48, pp: 2316-2327.
  18. Jatoba, A.; Correa, B.; Souza, J.; Vieira, N.; Luiz, J. and Mourino, P., 2014. Protein levels for Litopenaeus vannamei in semi-intensive and bio floc systems. Aquaculture. Vol. 432, pp: 365-371.
  19. Khanjani, M.H. and Sharifinia, M., 2020. Biofloc technology as a promising tool to improve aquaculture production. Reviews in Aquaculture. pp: 1-15. DOI: 10.1111/RAQ.12412.
  20. Khanjani, M.H.; Alizadeh, M. and Sharifinia, M., 2020a. Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: The effects of different food sources and salinity levels. Aquaculture Nutrition. Vol. 26, No. 2, pp: 328-337.
  21. Khanjani, M.H.; Sajjadi, M.; Alizadeh, M. and Sourinejad, I., 2016. Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iranian Journal of Fisheries Sciences. 15, pp: 1465-1484.
  22. Khanjani, M.H.; Sajjadi, M.M.; Alizadeh, M. and Sourinejad, I., 2017. Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture research. Vol. 48, pp: 1491-1501.
  23. Khanjani, M.H.; Sharifinia, M. and Hajirezaee, S., 2020b. Effects of different salinity levels on water quality, growth performance and body composition of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultured in a zero water exchange heterotrophic system. Annals of Animal Scienc. DOI: 10.2478/aoas.2020-0036
  24. Martinez-Cordova, L.R.; Torres, A.C. and Porchas-Cornejo, M.A., 2003. Dietary protein level and natural food managment in the culture of blue (Litopnaeus stylirostris) and white shrimp (Litopnaeus vannamei) in microcosms. Aquaculture Nutrition. Vol. 9, pp: 155-160.
  25. McIntosh, D.; Samocha, T.M.; Jones, E.R.; Lawrence, A.L.; Horowitz, S. and Horowitz, A., 2001. Effects of two commercially available low-protein diets (21% and 31%) on water and sediment quality, and on the production of Litopenaeus Lannamei in an outdoor tank system with limited water discharge. Aquacultural Engineering. Vol. 25, pp: 69-82.
  26. Michaud, L.; Blancheton, J.P.; Bruni, V. and Piedrahita, R., 2006. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. Aquaculture Engineering.Vol. 34, pp: 224-233.
  27. Minabi, K.; Sourinejad, I.; Alizadeh, M.; Rajabzadeh Ghatrami, E. and Khanjani, M.H., 2020. Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio) fingerlings. Aquaculture International. https://doi.org/10.1007/s10499-020-00564-7
  28. Mishra, J.; Samocha, T.; Patnaik, S.; Speed, M.; Gandy, R. and Ali, A., 2008. Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquacultural Engineering. Vol. 38, pp: 2-15.
  29. Moopam, R., 1999. Manual of oceanographic observations and pollutant analysis methods (Vol. 1, p. 20). Kuwait: ROPME.
  30. Olier, B.S.; Tubin, J.S.; de Mello, G.L.; Martınez-Porchas, M. and Emerenciano, M.G., 2020. Does vertical substrate could influence the dietary protein level and zootechnical performance of the Pacific white shrimp Litopenaeus vannamei reared in a biofloc system? Aquaculture International. Vol. 28, pp: 1227-1241.
  31. Porchas-Cornejo, M.A.; Martınez-Cordova, L.R.; Martınez-Porchas, M.; Barraza-Guardado, R. and Ramos-Trujillo, L., 2013. Study of zooplankton communities in shrimp earthen ponds, with and without organic nutrient-enriched substrates. Aquaculture International. Vol. 21, pp: 65-73.
  32. Taw, N., 2010. Biofloc technology expanding at white shrimp farms biofloc systems deliver high productivity with sustainability. Global Aquaculture Advocate. Vol. 2, No. 5/6, pp: 20-22.
  33. Xu, W.J. and Pan, L.Q., 2014. Evaluation of dietary protein level on selected parameters of immune and antioxidant systems, and growth performance of juvenile Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquaculture. Vol. 426, pp: 181-188.