ارزیابی اثرات روی معدنی و آلی بر شاخص‌های عملکردی، ابقاء بافتی، سامانه ایمنی، ریخت شناسی ژژنوم و وضعیت پاد اکسندگی در جوجه‌های گوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 گروه تحقیق و توسعه، شرکت دانش بنیان توسعه مکمل زیست فناور آریانا، مشهد، ایران

3 گروه علوم دامی، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

4 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

10.22034/AEJ.2021.256119.2403

چکیده

این پژوهش به منظور مقایسه اثر جایگزینی روی­آلی با روی معدنی بر شاخص‌های عملکردی، میزان ابقاء بافتی، سامانه ایمنی، ریخت شناسی روده و وضعیت پاداکسندگی جوجه‌های گوشتی انجام شد. 150قطعه جوجه گوشتی سویه راس 308 در قالب طرح کاملا تصادفی و در سطح آماری (0/05>p) در 3 تیمار و 5 تکرار و 10 پرنده در هر تکرار انجام شد. تیمارهای آزمایشی شامل: 1) جیره پایه  بر­  اساس ذرت و سویا + 110میلی‌گرم بر کیلوگرم روی تأمین شده از سولفات روی،­ 2) جیره پایه + 22 میلی‌گرم بر کیلوگرم روی تأمین شده از روی آلی (روی باند شده با اسیدهای آمینه، تولید شرکت آریانا) + 88 میلی‌گرم بر کیلوگرم روی تأمین شده از ­سولفات روی، 3) جیره پایه + 33 میلی‌گرم بر کیلوگرم روی­ تأمین شده از روی آلی تولید شرکت آریانا + 77 میلی‌گرم بر کیلوگرم روی تأمین شده از  سولفات روی بودند. استفاده از روی آلی تأثیر معنی­داری بر شاخص‌های عملکردی در جوجه‌های گوشتی نداشته است (0/05<p) اما سبب کاهش معنی‌داری در میزان مالون دی آلدئید کبد نسبت به تیمار شاهد شد (0/05>p). سنجش میزان ایمنوگلوبولین‌های خون تاثیر معنی داری را نشان نداد اما ارتفاع ویلی و عرض ویلی در تیمار سه نسبت به سایر تیمارها به طور معنی‌داری بالاتر بود (0/05>p). ارزیابی آنتی ­اکسیدانی نشان داد که استفاده از روی آلی نسبت به تیمار شاهد سبب افزایش معنی‌داری در میزان بیان ژن‌های سوپراکسید دیسموتاز شده است (0/05>p). به طور کلی می ­توان گفت استفاده از  روی­ آلی در خوراک طیور می ­تواند باعث بهبود عملکرد، ذخیره بافتی روی، سامانه ایمنی و پاد­اکسندگی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of replacing inorganic zinc with organic zinc on growth performance, immune system, antioxidant status, morphology of jejunum, and tissue zinc retention in broilers

نویسندگان [English]

  • Peyman Movahed 1
  • Ehsan Oskoueian 2
  • Mohammad Faseleh Jahromi 2
  • Parisa Shokryazdan 2
  • Mahdi Salari pour 3 2
  • Mohammad Reza Ahmadi 4 2
1 Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Research and Development Group, Tosse Mokamel Zist Fanavar Ariana Company, Mashhad, Iran
3 Department of Animal Science, Faculty of Animal Science and Fisheries, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran|Research and Development Group, Tosse Mokamel Zist Fanavar Ariana Company, Mashhad, Iran
4 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran|Research and Development Group, Tosse Mokamel Zist Fanavar Ariana Company, Mashhad, Iran
چکیده [English]

 
This study was contacted to evaluate the effects of replacement of inorganic zinc with organic zinc on the growth performance, immune system, antioxidant status, morphology of jejunum, and tissue zinc retention in broilers. The number of 150 Ross 308 broilers were used in a completely randomized design with Duncan's test at the statistical signification level of 0.05, in 3 treatments and 5 replicates and 10 birds in each replicate. The treatments wear: 1) basal diet based on corn and soybean without zinc 2) basal diet + 22 mg/kg organic zinc + 88 mg/kg zinc sulfate 3) basal diet + 33 mg/kg organic zinc + 77 mg/kg zinc sulfate. At day 42 of the experiment, one bird from each replicate was sacrificed and used for analysis. The results showed that replacement of inorganic zinc with organic zinc had no significant effect on the growth, feed intake, and feed conversion ratio of broilers. Also, it did not have any significant effect on the amounts of immunoglobulins (IgG, IgM and IgA). However, the antioxidant evaluation showed that the usage of organic zinc can respectively increase and decrease the amounts of superoxide dismutase and Malondialdehyde in the liver. Besides, morphological evaluation of intestine indicated that the organic zinc improved the villi height and width. In general, it seems that the usage of organic minerals, such as zinc, in the diet of boilers improves their immune system and antioxidant status.

کلیدواژه‌ها [English]

  • Bioavailability
  • Villi
  • Immunoglobulins
  • Superoxide dismutase
  • Malondialdehyde
  1. Bonaventura, P., Benedetti, G., Albarède, F. and Miossec, P., 2015. Zinc and its role in immunity and inflammation. Autoimmunity reviews. 14: 277-285.
  2. Faa, G., Nurchi, V.M., Ravarino, A., Fanni, D., Nemolato, S., Gerosa, C., Van Eyken, P. and Geboes, K., 2008. Zinc in gastrointestinal and liver disease. Coordination Chemistry Reviews. 252: 1257-1269.
  3. Ranaldi, G., Ferruzza, S., Canali, R., Leoni, G., Zalewski, P.D., Sambuy, Y., Perozzi, G. and Murgia, C., 2013. Intracellular zinc is required for intestinal cell survival signals triggered by the inflammatory cytokine TNFα. The Journal of nutritional biochemistry. 24: 967-976.
  4. Stefanidou, M., Maravelias, C., Dona, and Spiliopoulou, C., 2006. Zinc: a multipurpose trace element. Archives of toxicology. 80: 1.
  5. Batal, A., Parr, T. and Baker, D., 2001. Zinc bioavailability in tetrabasic zinc chloride and the dietary zinc requirement of young chicks fed a soy concentrate diet. Poultry Science. 80: 87-90.
  6. Jahanian, R. and Rasouli, E., 2015. Effects of dietary substitution of zinc‐methionine for inorganic zinc sources on growth performance, tissue zinc accumulation and some blood parameters in broiler chicks. Journal of animal physiology and animal nutrition. 99: 50-58.
  7. Gammoh, N.Z. and Rink, L., 2017. Zinc in infection and inflammation. Nutrients. 9: 624.
  8. Hafez, A., Nassef, E., Fahmy, M., Elsabagh, M., Bakr, A. and Hegazi, E., 2020. Impact of dietary nano-zinc oxide on immune response and antioxidant defense of broiler chickens. Environmental Science and Pollution Research. 27: 19108-19114.
  9. Kwiecień, M., Winiarska-Mieczan, A., Milczarek, A. and Klebaniuk, R., 2017. Biological response of broiler chickens to decreasing dietary inclusion levels of zinc glycine chelate. Biological trace element research. 175:
    204-213.
  10. Shao, Y., Lei, Z., Yuan, J., Yang, Y., Guo, Y. and Zhang, B., 2014. Effect of zinc on growth performance, gut morphometry, and cecal microbial community in broilers challenged with Salmonella enterica serovar typhimurium. Journal of Microbiology. 52: 1002-1011.
  11. Oteiza, P.I., 2012. Zinc and the modulation of redox homeostasis. Free Radical Biology and Medicine. 53:
    1748-1759.
  12. Star, L., Van der Klis, J., Rapp, C. and Ward, T., 2012. Bioavailability of organic and inorganic zinc sources in male broilers. Poultry Science. 91: 3115-3120.
  13. Świątkiewicz, S., Arczewska-Włosek, A. and Jozefiak, D., 2014. The efficacy of organic minerals in poultry nutrition: review and implications of recent studies. World's Poultry Science Journal. 70: 475-486.
  14. Oskoueian, E., Abdullah, N., Idrus, Z., Ebrahimi, M., Goh, Y.M., Shakeri, M. and Oskoueian, A., 2014. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes. BMC Complementary and Alternative Medicine. 14: 1-10.
  15. Bergmeyer, H., Horder, M. and Rej, R., 1986. International Federation Of Clinical Chemistry (Ifcc). J. Clin. Chem. Clin. Biochem. 24: 481-495.
  16. De Los Santos, F.S., Farnell, M., Tellez, G., Balog, J., Anthony, N., Torres-Rodriguez, A., Higgins, S., Hargis, B. and Donoghue, A., 2005. Effect of prebiotic on gut development and ascites incidence of broilers reared in a hypoxic environment. Poultry science. 84: 1092-1100.
  17. Bai, K., Huang, Q., Zhang, J., He, J., Zhang, L. and Wang, T., 2017. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poultry Science. 96: 74-82.
  18. Salim, H., Lee, H., Jo, C., Lee, S. and Lee, B.D., 2012. Effect of sex and dietary organic zinc on growth performance, carcass traits, tissue mineral content, and blood parameters of broiler chickens. Biological Trace Element Research. 147: 120-129.
  19. Feng, J., Ma, W., Niu, H., Wu, X. and Wang, Y., 2010. Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers. Biological Trace Element Research. 133: 203-211.
  20. De Grande, A., Leleu, S., Delezie, E., Rapp, C., De Smet, S., Goossens, E., Haesebrouck, F., Van Immerseel, F. and Ducatelle, R., 2020. Dietary zinc source impacts intestinal morphology and oxidative stress in young broilers. Poultry Science. 99: 441-453.
  21. Mwangi, S., Timmons, J., Ao, T., Paul, M., Macalintal, L., Pescatore, A., Cantor, A., Ford, M. and Dawson, K., 2017. Effect of zinc imprinting and replacing inorganic zinc with organic zinc on early performance of broiler chicks. Poultry Science. 96: 861-868.
  22. Rink, L. and Kirchner, H., 2000. Zinc-altered immune function and cytokine production. The Journal of nutrition. 130: 1407S-1411S.
  23. Liu, Z., Lu, L., Wang, R., Lei, H., Li, S., Zhang, L. and Luo, X., 2015. Effects of supplemental zinc source and level on antioxidant ability and fat metabolism-related enzymes of broilers. Poultry science. 94: 2686-2694.
  24. Tapiero, H. and Tew, K.D., 2003. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomedicine & Pharmacotherapy. 57: 399-411.
  25. Ma, W., Niu, H., Feng, J., Wang, Y. and Feng, J., 2011. Effects of zinc glycine chelate on oxidative stress, contents of trace elements, and intestinal morphology in broilers. Biological trace element research. 142: 546-556.
  26. Sahraei, M. and Janmohammadi, H., 2016. Estimation of the Relative Bioavailability of Different Zinc Sources in Broiler Chickens Fed by Semi-Puirfeid Diets. Research On Animal Production (Scientific and Research). 7: 59-49.
  27. Pimentel, J.L., Cook. M.E. and Greger, J.L., 1991. Immune Response of Chicks Fed Various Levels of Zinc. Poultry Science. 70(4): 947-954.
  28. Stahl, J.L., Cook, M.E. Sunde, M.L. and Greger, J.L., 1989. Enhanced humoral immunity in progeny chicks from hens fed practical diets supplemented with zinc. Appl. Agri. Res. 4: 86-89.
  29. Marek, A., Grądzki, Z., Kwiecień, M., Żylińska, B. and Kaczmarek, B., 2017. Effect of feed supplementation with zinc glycine chelate and zinc sulfate on cytokine and immunoglobulin gene expression profiles in chicken intestinal tissue. Poultry science. 96: 4224-4235.
  30. Wu, X., Zhu, Y., Zhang, K., Ding, X., Bai, S., Wang, J., Peng, H. and Zeng, Q., 2019. Growth performance, zinc tissue content, and intestinal health in meat ducks fed different specific surface area of micronized zinc oxide. Poultry science. 98: 3894-3901.
  31. Bun, S., Guo, Y., Guo, F., Ji, F. and Cao, H., 2011. Influence of organic zinc supplementation on the antioxidant status and immune responses of broilers challenged with Eimeria tenella. Poultry Science. 90: 1220-1226.
  32. Prasad, A.S., 2014. Zinc: an antioxidant and anti-inflammatory agent: role of zinc in degenerative disorders of aging. Journal of Trace Elements in Medicine and Biology. 28: 364-371.