بررسی توزیع مکانی غلظت فلزات سنگین سرب، روی و کادمیوم در رسوبات تالاب استیل آستارا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط زیست، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران

2 مرکز تحقیقات پسماند و پساب، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران

10.22034/AEJ.2021.245511.2482

چکیده

تالاب‌ها به عنوان یکی از مهم ترین زیستگاه‌های طبیعی در جهان، نقش زیادی در تامین آب شیرین و حفظ تعادل زیستی دارند. هدف از انجام این پژوهش ارزیابی توزیع مکانی غلظت فلزات سنگین سرب، روی و کادمیوم در رسوبات تالاب استیل آستارا است. داده های مورد نیاز از طریق نمونه برداری رسوب با دستگاه گرب ون وین به دست آمد و سپس از طریق آنالیز آزمایشگاهی و پردازش آماری مورد تجزیه و تحلیل قرار گرفت. نمونه برداری در فصول پاییز و زمستان 1398 به صورت ماهانه و تصادفی از رسوبات تالاب در 4 ایستگاه شمال، جنوب، شرق و غرب تالاب استیل انجام شد. نتایج نشان داد که غلظت فلزات سنگین در رسوبات بخش شمال و غرب به ویژه شمال غربی تالاب بیش تر از بخش‌های جنوب و شرق است. داده‌های به دست آمده از آزمایشات بر روی نمونه های استخراج شده، حاکی از آن است که فلزات روی، کادمیوم و سرب به ترتیب با غلظت 2/1، 1/2 و 0/99 پی پی ام بیش ترین غلظت را در ایستگاه غرب و کم ترین غلظت (صفر) را در ایستگاه جنوب دارند. نتایج حاصل از تحلیل آماری نشان داد که اختلاف بین میزان غلظت فلزات سنگین سرب، کادمیوم و روی در رسوبات تالاب در ایستگاه های مختلف معنی دار است (0/05>p). به منظور بررسی میزان همبستگی بین فلزات سنگین در تالاب از روش ضریب همبستگی پیرسون استفاده شد. نتایج نشان داد همبستگی بین غلظت کادمیوم و روی معنی دار نیست (0/01<p). هم چنین ضریب همبستگی بین غلظت سرب با روی نیز معنی دار نیست (0/01<p). همبستگی بین غلظت کادمیوم با سرب معنی دار می باشد (0/01>p).

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining the spatial distribution of Lead, Cadmium and zinc in the Sediments of Astara's Estil wetland

نویسندگان [English]

  • Ghazal Lotfi 1
  • Mozhgan Ahmadi Nadoushan 1 2
1 Department of environmental science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
2 Waste and Wastewater Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
چکیده [English]

Wetlands, as one of the most important natural habitats in the world, play an important role in supplying fresh water and maintaining biological balance. The aim of this study was evaluating the spatial distribution of heavy metal concentrations of lead, zinc and cadmium in the sediments of Astara's Steel wetland. Data were obtained through sediment sampling with Van Veen grab sampler and analyzed through laboratory and statistical analysis. Sampling was done in autumn and winter of 2019-2020 monthly and randomly from wetland sediments in 4 stations in north, south, east and west of Steel Wetland. The results showed that the concentration of heavy metals in the sediments of the northern and western parts, especially the northwestern part of the wetland is higher than the southern and eastern parts. Experimental data indicated that the metals zinc, cadmium and lead with concentrations of 1.2, 1.2 and 0.99 ppm, respectively, had the highest concentration in the western station and the lowest concentration (zero ppm) at the Southern Station. The results of statistical analysis showed that the difference between the concentrations of heavy metals lead, cadmium and zinc in wetland sediments at different stations was significant (p<0.05). Pearson correlation method was used to investigate the correlation between heavy metals in the wetland. The results showed that the correlation between cadmium and zinc concentrations was not significant (p>0.01). Also, the correlation between lead and zinc concentrations was not significant (p>0.01). The correlation between cadmium and lead concentrations was significant (p<0.01).

  1. Etemadi, E., Mohammadi, Y. and Salamat, N., 2013. Histopathological study on kidney and liver of common moorhen (Gallinula chloropus Linnaeus, 1758) as the bioindicator of pollution in anzali wetland. Aquatic Physiology and Biotechnology. 1(1): 1-18. (In Persian)
  2. Xia, P., Ma, L., Sun, R., Yang, Y., Tang, X., Yan, D., Lin, T., Zhang, Y. and Yi, Y., Evaluation of potential ecological risk, possible sources and controlling factors of heavy metals in surface sediment of Caohai Wetland, China, Science of the Total Environment. S0048-9697(20): 33752-33759.
  3. Migani, F., Borghesi, F. and Dinelli, E., Geochemical characterization of surface sediments from the northern Adriatic wetlands around the Po River delta. Part II: aqua regia results. Journal of Geochemical Exploration. 169: 13-29.
  4. Kalita, S., Sarma, H.P. and Devi, A., 2019. Sediment characterization and spatial distribution of heavy metals in the sediment of a tropical freshwater wetland of Indo-Burmese province. Environmental Pollution. 250: 969-980.
  5. Giri, S. and Kumar Singh, A., 2016. Spatial and temporal variation in distribution of metals in bed sediments of Subarnarekha River, India. Arab J Geosci. 9: 1-13.
  6. Xioa, H., Shahaba, A., Lia, J., Xia, B., Suna, X., Hea, H. and Yua, G., 2019.  Distribution, ecological risk assessment and source identification of heavy metals in surface sediments of Huixian karst wetland, China. Ecotoxicology and Environmental Safety. 185: 109700.
  7. Firozshahian, , Payandeh, kh. and  Sabz Alipour, S., 2020.  Evaluation of Heavy Contamination of Metals (Nickel, Cadmium and Vanadium) in Water and Hawalzim Wetland Sediments in Khuzestan Province. Journal of Animal Environmental. 11(4): 359-368. (In Persian)
  8. Zhou, , Guo, H. and Hao, Z., 2007. Spatial distribution of heavy metals in Hong Kong’s marine sediments and their human impacts: A GIS-based chemometric approach. Marine Pollution Bulletin. 54: 1372-1384.
  9. Pandiyan, J., Mahboob, SH., Govindarajan, M., Al-Ghanim, KH., Ahmed, Z., Al-Mulhm, N., Jagadheesan, R. and Krishnappa, K., 2020.  An assessment of level of heavy metals pollution in the water, sediment and aquatic organisms: A perspective of tackling environmental threats for food security. 128: 1218-1225. 
  10. Moore, F., Keshavarzi, B. and Ebrahimi, P., 2015. A GIS-based approach for detecting pollution sources and bioavailability of metals in coastal and marine sediments of ChabaharBay, SE Iran. Chemie der Erde. 75: 185-195.
  11. Wang, Q., Song, J., Li, X., Yuan, H., Li, N. and Cao, L, 2016. Environmental evolution records reflected by radionuclides in the sediment of coastal wetlands: A case study in the Yellow River Estuary. Journal of Environmental Radioactivity. 162: 87-96.
  12. Gua, Y. and Gaob, Y., 2019. An unconstrained ordination- and GIS-based approach for identifying anthropogenic sources of heavy metal pollution in marine sediments. Marine Pollution Bulletin. 146: 100-105.
  13. Khodami, Sh., Surif, M., Maznah, W.O. and Daryanabard, R., 2016. Assessment of heavy metal pollution in surface sediments of the Bayan Lepas area, Penang, Malaysia. 114: 615-622.
  14. Vesali Naseh, M.R., Karbasi, A., Ghazaban, F. and Baghvand, A., 2012. Relationship between Heavy Metal Concentration in Water and Sediments in Anzali Wetland, Iran. Journal of Health System Research. 8(1): 114-123. (In Persian)
  15. Varij Kazemi, K., Sadegh Nejad, H. and Falah, F., 2016. Zoning of heavy metal concentration in Anzali lagoon water using fuzzy classification analysis technique. The third national conference and the first international conference on applied research in chemical sciences and chemical engineering and the third national conference and the first international conference on applied research in biology. 4(2): 533-545. (In Persian)
  16. Elmizadeh, H., Farhadi, S. and Razmi, M., 2017. Estimates of heavy metals pollution in parishan wetland sediments using pollution indices. Environmental Sciences. 15(1): 61-76. (In Persian)
  17. Aghili, and Aghaei Moghaddam, A., 2018. Heavy metals assessment in water and sediment of Gorgan Bay before and after rearing wild common carp (Cyprinus carpio) in pen culture (khozeini Canal). Journal of Animal Environmental. 10(4): 331-338. (In Persian)
  18. Liao, J., Chen, J., Ru, X., Chen, J., Wu, H. and Wei, CH., 2017. Heavy metals in river surface sediments affected with multiple pollution sources, South China: enrichment and source apportionment. Journal of Geochemical Exploration. 176: 9-19.
  19. Sirizi, Z., Sakizadeh, M., Bahramifar, A., Ghasempouri, N. and Abbasi, M., 2017. Survey of Heavy Metals (Cd, Pb, Cu and Zn) Contamination in Muscle tissue of Esox luciusn from Anzali International Wetland. Accumulation and Risk Assessment. 22: 57-63.
  20. Zhu, H., Bing, H., Yi, H., Wu, Y. and Sun, Z., 2018. Spatial Distribution and Contamination Assessment of Heavy Metals in Surface Sediments of the Caofeidian Adjacent Sea after the Land Reclamation, Bohai Bay. Journal of Chemistry. 108: 1-13.
  21. Machado, K., Al Ferreira, P.A., Rizzi, J., Figueira, R. and Froehner, S., 2017. Spatial and Temporal Variation of Heavy Metals Contamination in Recent Sediments from Barigui River Basin, South Brazil. Environ Pollut Climate Change. 1: 1-9.
  22. Ataei, P., 2013. Analysis of environmental hazards of Astara Steel Lagoon using entropy method. The first conference on the protection of wetlands and water systems. 10(1): 44-63. (In Persian)
  23. Ashoori, A. and Varasteh Moradi, H., 2014. Diversity study of Wintering Waterfowls and Waders in Anzali Wetland, Iran. Wetland Ecobiology. 6(2): 55-66. (In Persian)
  24. APHA. 1995. AWWA,WEF.Standard Methods for the Examination of Water and Wastewater,19th Ed, USA.
  25. Yang, Y., Zhengchao, Z., Yanying, B., Yimin, C. and Weiping, C., 2016. Risk Assessment of Heavy Metal Pollution in Sediments of the Fenghe River by the Fuzzy Synthetic Evaluation Model and Multivariate Statistical Methods. 26: 326-334.
  26. Tabatabaiee, , Gandomkar, M., Eskandary, S. and Tabatabaiee, A., 2017. Investigation of Physicochemical Parameters and Heavy Metals in the Soil of Band-e AliKhan Wetland in Varamin and Environmental Impacts. Journal of Environmental Science Studies. 2(4): 476-484. (In Persian)
  27. Karimi, M. and Ghasempour Shirazi, M., 2012. Geochemical distribution and pollution levels of heavy metals (Lead, Zinc, Nickel, Chromium, Arsenic) in the sediments of the Kor River in the south of Marvdasht. Journal of Applied Geology. 8(2): 133-145.