تأثیر هم زمان انتخاب ژنومی و ارتقاء آلل ها به وسیله ویرایش ژنومی بر بهبود صفات کمی در برنامه های اصلاح نژاد گاو شیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 گروه پاتولوژی، دانشگاه گوئلف، گوئلف، کانادا

10.22034/AEJ.2021.303201.2631

چکیده

مطالعه حاضر به منظور مقایسه انتخاب ژنومی با اثرات ارتقاء آللی با ویرایش ژنوم بر واریانس افزایشی، پاسخ به انتخاب و ضریب هم خونی انجام گرفت. بدین منظور یک جمعیت گاو شیری در طی ۱۰ نسل با اندازه مؤثر 100 فرد در جمعیت پایه شبیه ­سازی شدند. ساختار ژنومی شامل 3 کروموزوم با طول 100 سانتی­­ مورگان فرض شد که بر روی هر کدام 1000 نشانگر 2 آللی با فراوانی 0/5 و 50 QTL به صورت تصادفی، دو آللی و با فراوانی برابر جانمایی شدند. اثرات نشانگری و مؤلفه ­های واریانس با روش بیز لاسو و مدل افزایشی برآورد شدند. سپس ارتقاء اللی بر روی 5 و 10 گاو نر انجام گرفت. در اولین مرحله 1  و سپس 20، 25 و 50 QTN ارتقاء داده شدند. برای برآورد اثرات افزایشی نشانگرها و مؤلفه ­های واریانس از پکیج BGLR در نرم ­افزار R استفاده شد. در مرحله بعد میانگین ضریب هم خونی برای GS+PAGE و GS تنها از نرم افزار PLINK استفاده شد. اثر ارتقاء آللی باعث افزایش واریانس افزایشی شد. با افزایش QTNe به میزان یک نسل، واریانس افزایشی نسبت به انتخاب ژنومی به میزان 0/139 افزایش یافت. پاسخ به انتخاب تجمعی در حالت GS+PAGE زمانی که در سناریوی 5 گاو نر و در وضعیت 1، 20، 25 و 50 QTNe به ترتیب 0/07، 0/17، 0/29 و 0/31 افزایش یافت. با افزایش تعداد QTNe میزان ضریب هم خونی نیز کمی افزایش یافت، ولی تفاوت معنی­ داری نداشت. ویرایش ژنوم موجب بهبود واریانس ژنتیکی جمعیت بدون افزایش هم خونی می ­باشد.
 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simultaneous effect of genomic selection and upgrade of alleles by Genomic Editing on quantitative traits improvement in dairy breeding programs

نویسندگان [English]

  • Hossein Abdollahi 1
  • Gholam Reza Dashab 1
  • Mohammad Rokouei 1
  • Mehdi Sargolzaei 2
1 Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Zabol, Iran
2 Department of Pathobiology, University of Guelph, Guelph, Canada
چکیده [English]

The present study aimed to compare the effect of upgrade of alleles by genome editing was investigated on genomic variance, response to selection and coefficient of inbreeding. For this study, a population of dairy cattle was simulated based on over ten generations with an effective size of 100 individuals in the base population. The genomic structure was assumed consisting of 3 chromosomes with a length of 100 cM and On each chromosome were located 1000 markers 2 allelic markers with a frequency of 0.5 and fifty QTL double alleles, in random with equal frequency. Marker effects and variance components were estimated using Bayes Lasso method and additive model. Then, upgrade of alleles was performed on 5 and 10 bulls. In the first stage 1, then 20, 25 and 50 QTN was upgraded by genome editing. The BGLR package in R software was used to estimate the additive effects and variance component. In the next step, the mean inbreeding coefficient for GS+PAGE was calculated and compared with the GS by PLINK software. The effect of upgrade alleles by genome editing was increased additive variance. With 1 QTNe was upgraded and inherited by next generation, additive variance relative to genome selection increased by 0.139. The response to cumulative selection in GS+PAGE model in 5 bulls and 1, 20, 25 and 50 QTNe, increased by 0.07, 0.17, 0.29 and 0.31, respectively. With increasing the number of QTNe, the inbreeding coefficient also increased slightly, but there was no significant. Genome editting improves the genetic variance of the population without increasing inbreeding.

کلیدواژه‌ها [English]

  • Genomic selection
  • Bayes Lasso
  • Upgrade of alleles
  • Genome editing
  1. Goddard, M.E. and Hayes, B.J., 2007. Genomic selection. Journal of Animal Breeding and Genetic. 124: 323-330.
  2. Meuwissen, T.H.E., Hayes, B.J. and Goddard, M.E., 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 157(4): 1819-1829. 
  3. Schaeffer, L.R., 2006. Strategy for applying genome-wide selection in dairy cattle. Journal of Animal Breeding Genetics. 123: 218-223.
  4. Song, H., Li, L., Zhang, Q., Zhang, S. and Ding, X., 2018. Accuracy and bias of genomic prediction with different de-regression methods. Animal. 12(6): 1111-1117.
  5. Habier, D., Fernando, R.L., Kizilkaya, K. and Garrick, D.J., 2011. Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics. 12: 186.
  6. de los Campos, G., Hickey, J.M., Pong-Wong, R., Daetwyler, H.D. and Callus, M.P.L., 2012. Whole genome regression and prediction methods applied to plant and animal breeding. Genetics. 193: 327-345.
  7. Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B. 58: 267-288.
  8. VanRaden, P., Van Tassell, C., Wiggans, G., Sonstegard, T., Schnabel, R., Taylor, J. and Schenkel, F., 2009. Invited Review: Reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science. 92: 16-24.
  9. Aguilar, I., Misztal, I., Johnson, D.L., Legarra, A., Tsuruta, S. and Lawlor, T.J., 2010. A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science. 93: 743-752.
  10. Hayes, B.J., Bowman, P.J., Chamberlain, A.J. and Goddard, M.E., 2009. Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science. 92: 433-443.
  11. Park, T. and Casella, G., 2008. The Bayesian Lasso. Journal of the American Statistical Association. 103: 681-686.
  12. de los Campos, G., Naya, H., Gianola, D., Crossa, J. and Legarra, A., 2009. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics. 182: 375-385.
  13. Legarra, A., Robert-Granié, C., Croiseau, P., Guillaume, F., Fritz, S. and Ducrocq, V., 2010. Aptitude of Bayesian lasso for genomic selection. In: 9. World Congress on Genetics Applied to Livestock Production (1-4). Presented at 9. World Congress on Genetics Applied to Livestock Production, Leipzig, DEU (2010-08-01-2010-08-06).
  14. Resende, M.F.R., Muñoz, P., Resende, M.D.V., Garrick, D.J., Fernando, R.L., Davis, M.J., Jokela, E.J., Martin, T.A., Peter, G.F. and Kirst, M., 2012. Accuracy of genomic selection methods in a standard data set of Loblolly Pine (Pinus taeda). Genetics. 190: 1503-1510.
  15. Cox, D.B.T., Randall Jeffrey Platt, R.J. and Zhang, F., 2015. Therapeutic genome editing: prospects and challenges. Nature Medicine. 21: 121-131.
  16. Jenko, J., Gorjanc, G., Cleveland, M., Varshney, R., Whitelaw, C.B., Woolliams, J. and Hickey, J., 2015. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genetics Selection Evolution. 47: 55.
  17. Carlson, D.F., Lancto, C.A., Zang, B., Kim, E.S., Walton, M. and Oldeschulte, D., 2016. Production of hornless dairy cattle from genome-edited cell lines. Nat. Biotechnol. 34: 479-481.
  18. Bastiaansen, J.W.M., Bovenhuis, H., Groenen, M.A.M., HendrikJan Megens, H.J. and Mulder, H.A., 2018. The impact of genome editing on the introduction of monogenic traits in livestock. Genetics Selection Evolution. 50: 18.
  19. Sargolzaei, M. and Schenkel, F.S., 2009. QMSim: a large-scale genome simulator for livestock. Bioinformatics. 25: 680-681.
  20. Villumsen, T.M., Janss, L. and Lund, M.S., 2009. The importance of haplotype length and heritability using genomic selection in dairy cattle. Journal of Animal Breeding and Genetics. 126: 3‐13.
  21. Dehnavi, E., Mahyari, S.A., Schenkel, F.S. and Sargolzaei, M., 2018. The effect of using cow genomic information on accuracy and bias of genomic breeding values in a simulated Holstein dairy cattle population. Journal of Dairy Science. 101(6): 5166-5176.
  22. Muñoz, P.R., Resende, J.M.F.R., Gezan, S.A., Resende, M.D.V., de los Campos, G. and Kirst, M., 2014. Unraveling additive from nonadditive effects using genomic relationship matrices. Genetics. 198: 1759-1768.
  23. Falconer, D.S. and Mackay, T.F.C., 1996. Introduction to quantitative genetics. Harlow, UK: Longman.
  24. Zhang, Q., PL-Calus, M., Guldbrandtsen, B., Lund, M. and Sahana, G., 2015. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genetics. 16(88): 1186-1197.
  25. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J. and Sham, P.C., 2007. PLINK: a toolset for whole-genome association and    population-based    linkage analysis. The   American   Journal   of   Human Genetics. 81: 559-575.
  26. McQuillan, R., Leutenegger, A.L., Abdel-Rahman, R., Franklin, C.S., Pericic, M. and Barac-Lauc, L., 2008. Runs of homozygosity in European populations. American Journal of Human Genetic. 83: 359-372.
  27. Pérez, P. and de los Campos, G., 2014. Genome-Wide Regression and Prediction with the BGLR Statistical Package. Genetics. 198: 483-495.
  28. Hickey, J.M., Bruce, C., Whitelaw, A. and Gorjanc, G., 2016. Promotion of alleles by genome editing in livestock breeding programmes. Journal of Animal Breeding and Genetic. 133(2): 83-84.