اثرات عمل آوری با هیدروکسید سدیم، اکسید کلسیم، اسید هیدروبرومیک و پراکسید هیدروژن بر ارزش تغذیه ای بقایای عدس

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران

10.22034/AEJ.2021.286935.2535

چکیده

این پژوهش به‌منظور بررسی تاثیر تیمارهای هیدروکسید سدیم (50 گرم در کیلوگرم ماده خشک)، اکسید کلسیم (160 گرم در کیلوگرم ماده خشک)، اسید هیدروبرومیک (60 میلی‌لیتر در کیلوگرم ماده خشک) و پراکسید هیدروژن (57 میلی‌لیتر در کیلوگرم ماده خشک) بر ارزش تغذیه ای بقایای عدس انجام گرفت. فراسنجه ­های تولید گاز با استفاده از آزمون تولید گاز اندازه­ گیری شدند. قابلیت هضم نمونه­  ها با استفاده از روش کشت بسته تعیین شد. عمل‌آوری بر ترکیب شیمیایی نمونه ­ها موثر بود (0/05>p). تیمارهای اکسید کلسیم، پراکسید هیدروژن و هیدروکسید سدیم باعث افزایش خاکستر شدند. مقدار پروتئین خام در نمونه ­های عمل­ آوری شده کاهش یافت. کم ترین مقدار در تیمارهای پراکسید هیدروژن و اکسید کلسیم مشاهده شد. تیمارهای پراکسید هیدروژن و هیدروکسید سدیم مقدار الیاف نامحلول در شوینده خنثی و اسیدی را کاهش و در مقابل مقدار کل مواد مغذی قابل هضم و انرژی خالص برای شیردهی و رشد را افزایش دادند. پتانسیل تولید گاز و فراسنجه­ های تخمینی مربوط به آن در نمونه ­های عمل­ آوری شده کم تر از شاهد بود (0/0001>p). قابلیت هضم ماده خشک در تیمارهای هیدروکسید سدیم و اکسید کلسیم، و قابلیت هضم ماده آلی در تیمارهای اسید هیدروبرومیک و اکسید کلسیم کاهش یافت (0/0001>p). همه تیمارها مقدار عامل تفکیک را افزایش دادند (0/0001>p). بیش ترین مقدار در تیمارهای پراکسید هیدروژن و اسید هیدروبرومیک مشاهده شد. پراکسید هیدروژن توده میکروبی تولید شده و بازده آن را افزایش داد (0/0001>p). در مجموع، هر چند که عمل ­آوری باعث بهبود ترکیب شیمیایی بقایای عدس شد، اما تاثیر مثبتی بر فراسنجه­ های تولید گاز و قابلیت هضم برون­ تنی نمونه ­­ها نداشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of processing with sodium hydroxide, calcium oxide, hydrobromic acid, and hydrogen peroxide on nutritional value of lentil (Lens culinaris) residues

نویسندگان [English]

  • Farzad Ghanbari
  • Javad Bayat Kouhsar
Department of Animal Science, Faculty of Agriculture and Natural Resources, Gonbad kavous University, Gonbad Kavous, Iran
چکیده [English]

This research was conducted to investigate the effect of processing with sodium hydroxide (NaOH, 50 g/kg DM), calcium oxide (CaO, 160 g/kg DM), hydrobromic acid (HBr, 60 ml/kg DM), and hydrogen peroxide (H2O2, 57 ml/kg DM) on the nutritional value of lentil (Lens culinaris) residues. Gas production test was used to estimate the parameters of gas production in samples. In vitro digestibility of the samples was determined by the batch culture method. Processing was effective on the residue's chemical composition (P<0.05). CaO, H2O2, and NaOH treatments increased the Ash compared to the control. Crude protein (CP) decreased in the processed samples, which was the lowest in the H2O2 and CaO treatments. Treatments of H2O2 and NaOH decreased the neutral detergent fiber (NDF) and acid detergent fiber (ADF) and increased total digestible nutrients (TDN), net energy for lactation (Nel), and net energy for growth (Neg). Gas production potential and related estimated parameters were less in treated samples than in the control group (P<0.0001). Dry matter digestibility (DMD) in NaOH and CaO treatments and organic matter digestibility (OMD) in HBr and CaO treatments decreased compared to the control (P<0.0001). All treatments increased the amount of partitioning factor (PF) compared to the control (P<0.0001). The highest amount was observed in H2O2 and HBr treatments (P<0.0001). H2O2 increased the microbial biomass (MB) and its efficiency (P<0.0001). Overall, although processing improved the chemical composition of lentil residues, it did not have a positive effect on gas production parameters and in vitro digestibility of the samples.

کلیدواژه‌ها [English]

  • Chemical processing
  • Gas production test
  • In vitro digestibility
  • Lentil residues
  1. Abbeddou, S., Rihawi, S., Hess, H.D., Iniguez, L., Mayer, A.C. and Kreuzer. M., 2011. Nutritional composition of lenti straw, vetch hay, olive leaves, and saltbush leaves and their digestibility as measured in fat-tailed sheep. Small Ruminant Research. 96: 126-135.
  2. Rodrigues M.A.M., Pinto, P., Bezerra, R.M.F., Dias, A.A., Guedes, C.V.M., Cardoso, V.M.G., Cone, J.W., Ferreira, L.M.M., Co-laco, J. and Sequeria, C.A., 2008. Effect of enzyme extract iso-lated from white-rot fungi on chemical composition and in vi-tro digestibility of wheat straw. Animal Feed Science and Technology. 141: 326-338.
  3. Jami, S., Yosef, E., Nikbachat, M., Miron, J. and Mizrahi, I., 2014. Effects of including NaOH-treated corn straw as a substitute for wheat hay in the ration of lactating cows on performance, digestibility, and rumen microbial profile. Journal of dairy Science. 97: 1623-1633.
  4. Nie, H., Wang, Z., You, J., Zhu, G., Wang, H. and Wang, F., 2020. Comparison of in vitro digestibility and chemical composition among four crop straws treated by Pleurotus ostreatus. Asian-Australian Journal of Animal Science. 33: 24-34.
  5. Brodie, G., Bootes, N., Dunshea, F. and Leury, B., 2019. Microwave processing of animal feed. A brief review. American Society of Agricultural and Biological Engineers. 63: 705-717.
  6. Valizadeh Ghale-Beig, A., Ghoorchi, T. and Hasani, S., 2020. Effects of physicochemical processing of wheat grain on ruminal microbial population, biochemical parameters and blood safety in Afshari male lambs. Journal of Animal Environment. 12(3): 41-50. (In Persian)
  7. Sarnklong, C., Cone, J.W., Pellikaan, W. and Hendriks, W.H., 2010. Utilization of rice straw and different treatments to improve is feed value for ruminants: A review. Asian-Australian Journal of Animal Science. 23: 680-692.
  8. Bouchard, J., Methot, M. and Jordan, B., 2006. The effects of ionizing radiation on the cellulose of woodfree paper. Cellulose. 13: 601-610.
  9. Sheikh, G.G., Ganai, A.M., Reshi, P.A., Sheikh, B. and Shabir, M., 2018. Improved paddy straw and ruminant feed. A review. JoJ Sciences. 1: 10-17.
  10. Aslaniyan, A., Ghanbari, F., Bayat Kouhsar, J. and Karimi Shahraki, B., 2016. Effects of processing with gamma ray, sodium hydroxide and calcium oxide on gas production parameters and digestibility of soybean straw. Animal Production. 18(2): 235-248. (In Persian)
  11. Babayi, , Ghanbari, F., Gharehbash, A.M. and Bayat Kouhsar, J., 2016. Effects of processing with electron beam, hydrogen peroxide and hydrobromic acid on the nutritional value of vetch wastes. Iranian Journal of Animal Science Reaserch. 8(3): 441-454. (In Persian)
  12. Soltani Naseri, K., Ghanbari, F., Bayat Kouhsar, J. and Taliey, F., 2018. Effect of Chemical and Biological Processing Methods on Chemical Composition, Gas Production Parameters and In Vitro Digestibility of Cicer Arietinum Wastes. Research On Animal Production. 9(22): 72-82. (In Persian)
  13. Ghiasvand, M., Reza Yazdi, K. and Dehghan Banadaki, M., 2013. The effect of different processing methods on the chemical composition and ruminal degradability of rapeseed straw and its effect on fattening performance of male Holstein calves. Iranian Journal of Animal Science Reaserch. 22(1): 1-13. (In Persian)
  14. Mudgal, V., Mehta, M.K. and Rane, A.S., 2018. Lentil straw: An alternative and nutritious feed resource for kids. Aniimal Nutrition. 4: 417-421.
  15. Chaudhry, A.S., 2000. Rumen degradation in saco in sheep of wheat straw treate with calcium oxid, sodium hydroxide and sodium hydroxide plus hydrogen peroxide Animal Feed Science and Technology. 83: 313-323.
  16.  AOAC. 2005. Official Methods of Analysis. Association of Official Analytical Chemists. Washington, DC. USA.
  17. Van Soest, P.J., 1994. Nutritional Ecology of the Ruminant. Cornel University Press, Ithaca, New York. 374 p.
  18. National Research Council (NRC). 2001. Nutrient requirements of dairy cattle. National Academies Press.
  19. Menke, K.H. and Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research Development, Separateprint. 28: 7-55.
  20. Orskov, E.R. and McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agriculture Science. 92: 499-503.
  21. G., Blummel, M., Makkar, H. and Becker, K., 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: A review. Animal Feed Science and Technology. 72: 261-281.
  22. Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B. and France, J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology. 48: 185-97.
  23. Broderick, G.A. and Kang, J.H., 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro Journal of Animal Science. 63: 64-75.
  24. Makkar H.P.S., 2010. In vitro screening of feed resources for efficiency of microbial protein synthesis. Journal of Animal Science. 107-144. DOI: 10.1007/978-90-481-3297-3-7.
  25. SAS. 2003. SAS User’s Guide: Statistics, Version 9.1 Edition. SAS Institute, Cary, NC, USA.
  26. Chaudhry, A.S., 1998. Nutrient composition, digestion and rumen fermentation in sheep of wheat straw treated with calcium oxide, sodium hydroxide and alkaline hydrogen peroxide. Animal Feed Science and Technology. 74: 315-328.
  27. Baytok, E., Aksu, T., Karsli, M.A. and Muruz, H., 2005. The effects of formic acid, molasses and inoculant as silage additives on corn silage composition and ruminal fermentation characteristics in sheep. Turkish Journal of Veterinary and Animal Science. 29: 469-474.
  28. Zhao, L., Ren, L., Zhou, Zh., Meng, Q., Huo, Y. and Wang, F., 2016. Improving ruminal degradability and energetic values of bamboo shoot shell using chemical treatments. Journal of Animal Science. 87(7): 895-903. org/10.1111/asj.12512.
  29. Alaei, A., Ghanbar, F., Bayatkouhsar, J. and Farivar, F., 2019. Evaluation of nutritional value of vicia faba residues processed with some chemical compounds using in vitro and nylon bag techniques Research on Animal production. 10: 19-29. DOI: 10.29252/rap.10.26.19. (In Persian)
  30. Khorvash, M., Kargar, S., Yalchi, T. and Ghorbani, G.R., 2010. Effect of calcium oxide and calcium hydroxide on the chemical composition and in vitro digestibility of soybean straw. Journal of Food Agriculture and Environment. 8: 356-359.
  31. Manokhoon, P. and Rangseesuriyachai, T., 2020. Effect of two-stage sodium hydroxide pretreatment on the composition and structure of Napier grass (Pakchong 1) (Pennisetum purpureum). International Journal of green Energy. 13: 864-871.
  32. Zhang, W., Pan, K., Liu, C., Qu, M., Yang, K.O., Song, X. and Zhao, X., 2020. Recombinant Lentinula edodes xylanase improved the hydrolysis and in vitro ruminal fermentation of soybean straw by changing its fiber structure. International Journal of Biological Macromolecules. 151: 286-292.
  33. Kim, S., 2018. Evaluation of alkali-pretreated soybean straw for lignocellulosic bioethanol production. International Journal of Polymer Science. 1-7. https://doi.org/10.1155/2018/5241748.
  34. Harun, S. and Geok, S.K., 2016. Effect of sodium hydroxide pretreatment on rice straw composition. Indian Journal of Science and Technology. 9: 1-9.
  35. Polyorach, S. and Wanapat, M., 2015. Improving the quality of rice straw by urea and calcium hydroxide on rumen ecology, microbial protein synthesis in beef cattle. Journal of animal physiology and animal nutrition. 99(3): 449-456.
  36. Qing, Q., Guo, Q., Zhou, L., Gao, X., Lu, X. and Zhang, Y., 2017. Comparison of alkaline and acid pretreatments for enzymatic hydrolysis of soybean hull and soybean straw to produce fermentable sugars. Industrial Crops & Products. 109: 391-397.
  37. Bahraini, Z., Salari, S., Sari, M., Fayazi, J. and Behgar, M., 2017. Effect of radiation on chemical composition and protein quality of cottonseed meal. Animal Science Journal. 88: 1435-1435
  38. Chang, S., Li, W. and Zhang, Y., 2018. Impact of double alkaline peroxide pretreatment on enzymatic hydrolysis of palm fibre. Carbon Resource Conversion. 1: 147-152.
  39. Trach, N.X., 2001. Treatment and supplementation of rice straw for ruminant feeding in Vietnam. Doctor Scientarium Thesis. Agricultural University of Norway. As, Norway. 174 p.
  40. Ma, Y., Chen, X., Zahoor Khan, M., Xiao, J., Lio, S., Wang, J., He, Z., Li, C. and Cao, Z., 2020. The impact of ammoniation treatment on the chemical composition and in vitro digestibility of rice straw in Chinese Holsteins. Animals. 10: 1854-1837.
  41. Lithourgidis, A.S., Vasilakoglou, I.B., Dordas, C.A. and Yiakoulaki, M.D., 2006. Forage yield and quality of commen vetch mixtures with oat and triticale in two seeding ratios. Field Crop Research. 99: 106-113.
  42. Hossein Zadeh, H.A., Bayat Koohsar, J., Ghanbari, F. and Farivar, F., 2020. Effect of physical and biological processing methods on chemical composition, gas production parameters and in vitro digestibility of barley grain. Research on Animal production, 11: 46-56. DOI: 10.29252/rap.11.27.46. (In Persian)
  43. Salamatazar, M., Salamatdoust-nobar, R. and Maheri-sis, N., 2012. Evaluation of the effects of Thymus vulgar on degradability kinetics of canola meal for ruminant using in vitro gas production technique. Journal of Cell and Animal Biology. 6: 164-168.
  44. Akinfemi, A., Adu, O.A. and Adebiyi, O.A., 2009. Use of white-rot fungi in upgrading maize straw and the resulting impact on chemical composition and in vitro Livestock Research for Rural Development. 21: 115-122.
  45. Chen, X.L., Wang, J.K., WU, Y.M. and liu, J.X., 2007. Effects of chemical treatments of rice straw on rumen fermentation characteristics, fibrolytic enzyme activities and populations of liquid-and solid-associated ruminal microbes in vitro. Animal Feed Science and Technology. 141: 1-14.
  46. Liu, J.X., Susenbeth, A. and Sudekum, K.H. 2002. In vitro gas production measurements to evaluate interactions between untreated and chemically treated rice straws, grass hay, and mulberry leaves. Journal of Animal Science. 80: 517-524.
  47. Chaji, M., Mohammadabadi, T., Mamouie, M. and Tabatabaei, S., 2010. The effect of processing with high steam and sodium hydroxide on nutritive value of sugarcane pith by in vitro gas production. Journal of Animal and Veterinary Advance. 9: 1015-1018.
  48. Al-Masri, M.R., 2005. Nutritive value of some agricultural wastes as affected by relatively low gamma irradiation levels and chemical treatments. Bioresoure Technology. 96: 1737-1741.
  49. Danesh Mesgaran M., Malakkhahi, M., Heravi Moussavi, B., Vakili, A.R. and Tahmasbi, A., 2010. In situ ruminal degradation and in vitro gas production of chemically treated sesame stover. Journal of Animal and Veterinary Advances. 9: 2256-2260.
  50. Mahala, A.G. and Khalifa, I.M., 2007. The effect of molasses on quality of sorghum (Sorghum bicolor) silage. Res. Journal of Animal Veterinaly Science. 2: 43-46.
  51. Keshavarz, Z., Bayat Kouhsar, J., Ghanbari, F. and Talei, F., 2020. Effect of using organic acid and alcoholic extract of propolis on chemical composition, aerobic stability, microbial population and gas production parameters of barley silage in ruminant nutrition. Journal of Animal Environment. 12(4): 111-122. DOI: 10.22034/AEJ.2020.124977. (In Persian)
  52. Joehnke, M.S., Jeske, S., Ispiryan, L., Zannini, E., Arendt, E.K., Bez, J., Sørensen, J.C. and Petersen, I.L., 2021. Nutritional and anti-nutritional properties of lentil (Lens culinaris) protein isolates prepared by pilot-scale processing. Food Chemistry. 9: 100-112.
  53. Hatami, A., Alipour, D., Tabatabai, M. and Hejbari, F., 2014. The effect of ensiling pomegranate peel on chemical compounds, parameters of gas production and microbial mass production in vitro. Animal production research. 4: 79-93.
  54. Mishra, A.S., Chaturvedi, O.H., Khali, A., Prasad, R., Santra, A., Misra, A.K., Parthasarathy, S. and Jakhmola, R.C., 2000. Effect of sodium hydroxide and alkaline hydrogen peroxide treatment on physical and chemical characteristics and IVOMD of mustard straw. Animal Feed Science and Technology. 84: 257-264.
  55. Nazem, K., Rouzbehan, Y. and Shojaosadati, S.A., 2008. The nutritive value of citrus pulp (lemon andorange) treated with Neurospora sitophila. Journal of Science and Technology of Agriculture and Natural Resources. 12: 495-506.
  56. Sommart, K., Parker, D.S., Rowlinson, P. and Wanapat, M., 2000. Fermentation characteristics and microbial protein synthesis in an in vitro system using cassava, rice straw and dried ruzi grass as substrates. Asian-Australasian Journal of Animal Sciences. 13: 1084-1093.
  57. Mohammadabadi, T., 2020. Effect of using pruning foliage of conocarpus on digestibility, rumen fermentation and blood parameters of Arabi sheep. Animal Production Research. 9(3): 59-69. (In Persian)
  58. Owen, E., Klopfenstan, T. and Urio, N.A., 1984. Treatement with other chemicals in straw and other fibrous by-product as feed. Sundstol and Owened. Elsevier Science publishers, Amesterdam. 248-273.
  59. Blummel, M., Steingass, H. and Becker, K., 1997. The relationship between gas production, microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition. 77: 911-921.
  60. Makkar, H.P.S., Blummel, M. and Becker, K., 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glysols and tannins, and their implication in gas production and true digestibility in in vitro British Journal of Nutrition. 73: 897-913.
  61. Blummel, M. and Orskov, E.R., 1993. Composition of in vitro gas production and nylon bag degradability of roughages in predicting food intake in cattle. Animal Feed Science and Technology. 40: 109-119.