اثرات استراتژی های مختلف تغذیه طی جایگزینی چربی ضایعات طیور به جای روغن ماهی جیره بر فراسنجه های رشد، ضریب تبدیل غذا و خون شناسی ماهی قزل آلای رنگین کمان (Oncorhynchus mykiss)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیلات، دانشکده کشاورزی و منابع طبیعی، واحد آزادشهر، دانشگاه آزاد اسلامی، آزادشهر، ایران

10.22034/AEJ.2021.316488.2693

چکیده

با توجه به محدودیت روغن ماهی و قیمت بالای آن، صنعت خوراک آبزیان نیاز به یافتن جایگزین­ های مناسب برای روغن ماهی در صنعت آبزی ­پروری دارد. لذا هدف از مطالعه حاضر بررسی تاثیر جایگزینی چربی ضایعات طیور به جای روغن ماهی جیره با استراتژی برگشت به جیره اصلی بر برخی فراسنجه ­های رشد و خونی ماهی قزل­ آلای رنگین ­کمان (Oncorhynchus mykiss) به منظور یافتن جایگزین مناسب برای روغن ماهی است. برای انجام این تحقیق 120 عدد بچه ماهی به وزن  72/13±50/2 گرم خریداری و پس از دوره سازگاری، 25 قطعه در هر حوضچه به صورت طرح کاملا تصادفی با 5 تیمار و 3 تکرار رهاسازی شدند. تیمار شاهد: تغذیه شده با جیره معمول، تیمار 1: تغذیه شده با جیره حاوی مخلوط روغن ماهی و چربی طیور (50/50) به مدت یک ماه و با جیره معمول در ماه دوم، تیمار 2: تغذیه شده با جیره حاوی چربی طیور به مدت یک ماه و با جیره معمول در ماه دوم، تیمار 3: تغذیه شده با جیره حاوی مخلوط روغن ماهی و چربی طیور (50/50)، تیمار 4: تغذیه شده با جیره حاوی چربی طیور. در پایان دوره دو ماهه پرورش، شاخص ­های رشد و ضریب تبدیل غذایی محاسبه شد. هم چنین 6 عدد ماهی از هر تیمار خون­گیری و فراسنجه ­های خونی طبق روش ­های استاندارد اندازه ­  گیری شد. اختلاف معنی­ داری بین تیمارهای مختلف در خصوص فراسنجه ­های رشد، تغذیه و تعداد گلبول­ های قرمز وجود نداشت. مقدار هموگلوبین در تیمارهای 1 و 4 به طور معنی ­داری کمتر از تیمار شاهد بود. مقدار هماتوکریت در تیمار 4 به طور معنی­ داری کم تر از تیمار 1 بود. تعداد گلبول­ های سفید در تیمار 4 به طور معنی ­داری کم تر از سایر تیمارها بود. کم ترین درصد لنفوسیت و بیش ترین درصد نوتروفیل در نمونه­ های تیمار 4 مشاهده شد، به طوری که مقدار این فراسنجه در تیمار 4 با سایر تیمارها معنی ­دار بود. جایگزینی چربی ضایعات طیور به ­جای روغن ماهی و تغذیه مجدد با جیره معمول به دلیل توانایی بالای ماهی قزل ­آلای رنگین کمان در هضم مواد غذایی و تبدیل غذا به بافت می­ تواند باعث کاهش هزینه­ های تولید شود. بنابراین تمام تیمارها به غیر از تیمار 4 قابل توصیه می­ باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of alternative feeding sterategies during replacement of fish oil by poultry waste fat on growth, food conversion and haematological parameters of rainbow trout (Oncorhynchus mykiss)

نویسندگان [English]

  • Abdolvahab Kalteh
  • Afshin Ghelichi
  • Sarah Jorjani
  • Reza Akrami
  • Fariborz Ghojoghi
Department of Fisheries, Faculty of Agriculture Sciences and Natural Resources, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran
چکیده [English]

Due to the limitations of fish oil and its high price, the aquatic feed industry needs to find suitable alternatives to fish oil in the aquaculture industry. So the aim of this study was to investigate the effect of replacement of poultry waste fat instead of dietary fish oil with return to main diet strategy on some growth and blood parameters of rainbow trout (Oncorhynchus mykiss) in order to find a suitable alternative to fish oil. 120 rainbow trout juveniles weighing 50.72±2.13 g were purchased and after the adaptation period, 25 fish in each pond were released in a completely randomized design with 5 treatments and 3 replications. Control treatment: fed with normal diet, treatment 1: fed with diet containing mixture of fish oil and poultry fat (50/50) for one month and with normal diet in the second month, treatment 2: fed with diet containing poultry fat for one month and with the normal diet in the second month, treatment 3: fed a diet containing a mixture of fish oil and poultry fat (50/50), treatment 4: fed a diet containing poultry fat. At the end of the two-month period, growth indices and food conversion ratio were measured. Also, 6 fish from each treatment were randomly sampled and blood parameters were measured according to standard methods. There was no significant difference between different treatments in terms of growth, nutrition and red blood cell counts. The amount of hemoglobin in treatments 1 and 4 was significantly lower than the control group. The amount of hematocrit in treatment 4 was significantly lower than treatment 1. The number of white blood cells in treatment 4 was significantly lower than other groups. The lowest percentage of lymphocytes and the highest percentage of neutrophils were observed in the treatment 4, so that the amount of this parameter was significant in treatment 4 with other groups. Replacing poultry waste fat with fish oil and re-feeding with the normal diet due to the high ability of rainbow trout to digest food and convert food into tissue can reduce production costs. Therefore, all treatments except treatment 4 are recommended.

کلیدواژه‌ها [English]

  • Rainbow trout (Oncorhynchus mykiss)
  • Fish oil
  • Poultry waste fat
  • Growth
  • Food conversion ratio
  • Haematology
  1. Mashaei, M., 2000. Salmon propagation and breeding guide. Sedgwick, D.A., (Ed.). Asman Publications. 208 p. (In Persian)
  2. Turchini, G.M., Mentasti, T., Frøyland, L., Orban, E., Caprino, F., Moretti, V.M. and Valfré, F., 2003. Effects of alternative dietary lipid sources on performance, tissue chemical composition, mitochondrial fatty acid oxidation capabilities and sensory characteristics in brown trout (Salmo trutta). Aquaculture. 225(1): 251-267.
  3. Mourente, G. and Bell, J.G., 2006. Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax) over a long term growth study: Effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet. Comparative Biochemistry & Physiology. Part B: Biochemistry and Molecular Biology. 145(3-4): 389-99. doi: 10.1016/j.cbpb.2006.08.012. Epub 2006 Sep 6. PMID: 17055762.
  4. Tacon, A.G.J., 2004. Use of fish meal and fish oil in aquaculture: a global perspective. Aquatic Resources, Culture and Development. 1(1): 1-3.
  5. Naylor, R.L., Hardy, R.W., Bureau, D.P., Chiu, A., Elliott, M., Farrell, A.P., Forster, I., Gatlin, D.M., Goldburgh, R.J., Hua, K. and Nichols, P.D., 2009. Feeding aquaculture in an era of finite resources. Proceeding of the National Academy of Sciences of the United States of America. 106 (36): 15103-15110.
  6. Tacon, A.G.J. and Metian, M., 2008. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture. 285(1): 146-158.
  7. Turchini, G.M., Torstensen, B.E. and Ng, W.K., 2009. Fish oil replacement in finfish nutrition. Reviews in Aquaculture. 1: 10-57.
  8. Huyben, D., Rimoldi, S., Ceccotti, C., Montero, D., Betancor, M., Iannini, F. and Terova, G., 2020. Effect of dietary oil from Camelina sativa on the growth performance, fillet fatty acid profile and gut microbiome of gilthead sea bream (Sparus aurata). PeerJ. 8: e10430.
  9. Liu, K.K.M., Barrows, F.T., Hardy, R.W. and Dong, F.M., 2004. Body composition, growth performance, and product quality of rainbow trout (Oncorhynchus mykiss) fed diets containing poultry fat, soybean/corn lecithin, or menhaden oil. Aquaculture. 238(1): 309-328. 
  10. Betancor, M.B., MacEwan, A., Sprague, M., Gong, X., Montero, D., Han, L., Napier, J.A., Norambuena, F., Izquierdo, M. and Tocher, D.R., 2021. Oil from transgenic Camelina sativa as a source of EPA and DHA in feed for European sea bass (Dicentrarchus labrax). Aquaculture. 530: 735759.
  11. Dawood, M.A.O., Ali, M.F., Amer, A.A., Gewaily, M.S., Mahmoud, M.M., Alkafafy, M., Assar, D.H., Soliman, A.A. and Van Doan, H., 2021. The influence of coconut oil on the growth, immune, and antioxidative responses and the intestinal digestive enzymes and histomorphometry features of Nile tilapia (Oreochromis niloticus). Fish Physiology and Biochemistry. 1-12.
  12. Razavi Shirazi, H., 2001. Technology of marine products. Naghsh Mehr Publications. 676 p. (In Persian)
  13. Ebrahimi, A., Vernosfadrani, A.M. and Motaghi, A., 2013. Investigating the possibility of using poultry waste oil and fish oil as dietary fat sources for growth factors in rainbow trout. The second national conference on the development and breeding of cold water fish. 125-128. (In Persian)
  14. Pejman Mehr, P., Farahani, M. and Niknam Shiraz, A., 2013. Investigating the reaction of essential fatty acids in plant and animal food sources with the aim of reducing the consumption of fish oil in salmon diet. The second national conference on the development and breeding of cold water fish. 42-46. (In Persian)
  15. Carvalho, C.S., Selistre de Araujo, H.S. and Fernandes, M.N., 2004. Hepatic metallothionein in a teleost (Prochilodus scrofa) exposed to copper at pH 4.5 and pH 8.0. Comparative Biochemistry and Physiology Part B. 137: 225-234.
  16. Campos, I., Matos, E., Maia, M.R., Marques, A. and Valente, L.M., 2019. Partial and total replacement of fish oil by poultry fat in diets for European seabass (Dicentrarchus labrax) juveniles: effects on nutrient utilization, growth performance, tissue composition and lipid metabolism. Aquaculture. 502: 107-120.
  17. Monteiro, M., Matos, E., Ramos, R., Campos, I. and Valente, L., 2018. A blend of land animal fats can replace up to 75% fish oil without affecting growth and nutrient utilization of European seabass. Aquaculture. 487: 22-31.
  18. Baweja, S. and Babbar, B.K., 2015. Growth performance and tissue fatty acid composition of Cyprius Carpio (Linn.) reared on feeds containing animal fats as fish oil replacemen. The Bioscan an International Quarterly Journal of Life Sciences. 10(2): 655-660.
  19. Friesen, E., Balfry, S.K., Skura, B.J., Ikonomou, M. and Higgs, D.A., 2013. Evaluation of poultry fat and blends of poultry fat with cold-pressed flaxseed oil as supplemental dietary lipid sources for juvenile sablefish (Anoplopoma fimbria). Aquaculture Research. 44(2): 300-316.
  20. Friesen, E.N., Skura, B.J., Ikonomou, M.G., Oterhals, A. and Higgs, D.A., 2015. Influence of terrestrial lipid and protein sources and activated carbon-treated fish oil on levels of persistent organic pollutants and fatty acids in the flesh of Atlantic salmon. Aquaculture Research. 46(2): 358-381.
  21. Bowyer, J.N., Qin, J.G., Smullen, R.P. and Stone, D.A.J., 2012. Replacement of fish oil by poultry oil and canola oil in yellowtail kingfish (Seriola lalandi) at optimal and suboptimal temperatures. Aquaculture. 356: 211-222.
  22. Xue, M. and Luo-Peng, G., 2006. Effects of six alternative lipid sources on growth and tissue fatty acids composition in Japanese sea bass (Lateolabrax japonicas). Aquaculture. 260(1-4): 206-214.
  23. Razmpour, M. and Farmani, J., 2016. methods of extracting chicken fat, the first national conference of new technologies in Iran's food sciences and industries and tourism, Babolsar. https://civilica.com /doc/615467.
  24. Folch, J., Lees, M. and Sloane-Stanley, G.H., 1957. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. Journal of Biology Chemical. 226: 497-509.
  25. Bagenal, T., 1978. Methods for assessment of fish production in fresh waters. Blackwall scientific pub. Oxf. London. 365 p.
  26. Liland, N.S., Rosenlund, G., Berntssen, M.H.G., Brattelid, T., Madsen, L. and Torstensen, B.I., 2013. Net production of Atlantic salmon (FIFO, Fish in Fish out<1) with dietary plant proteins and vegetable oils. Aquaculture Nutrition. 19: 289-300.
  27. Mehrabi, Y., 1998. Study of anesthetic effect of clove powder on rainbow trout. Aquaculture. 21: 160-162. (In Persian)
  28. Hoston, A.H., 1990. Blood and Circulation. In: Shreck, C.B. and Moyle, P.B., (Eds.). Methods for fish biology. American Fisheries Society, Bethesda, MD. 273-335.
  29. Drobkin, D.R., 1945. Crystallographic and optical properties of human hemoglobin: proposal for standardization of hemoglobin. American Journal of Medical Science. 209: 268-270.
  30. Pirozzi, I. and Booth, M.A., 2009. The effect of temperature and body weight on the routine metabolic rate and postprandial metabolic response in mulloway, Argyrosomus japonicus. Comparative Biochemistry and Physiology. Part A: Molecular and Integrative Physiology. 154(1): 110-118.
  31. Bayraktar, K. and Bayır, A., 2012. The Effect of the Replacement of Fish oil with Animal Fats on the Growth Performance, Survival and Fatty Acid Profile of Rainbow Trout Juveniles, Oncorhynchus mykiss. Turkish Journal of Fisheries and Aquatic Sciences. 12: 661-666.
  32. Friesen, E., Balfry, S.K., Skura, B.J., Ikonomou, M. and Higgs, D.A., 2013. Evaluation of poultry fat and blends of poultry fat with cold-pressed flaxseed oil as supplemental dietary lipid sources for juvenile sablefish (Anoplopoma fimbria). Aquaculture Research. 44(2): 300-316.
  33. Greene, D.H.S. and Selivonchick, D.P., 1990. Effects of dietary vegetable, animal and marine lipids on muscle lipid and hematology of rainbow trout (Oncorhynchus mykiss). Aquaculture. 89(2): 165-182.
  34. Lochmann, R. and Phillips, H., 1995. Comparison of Rice Bran Oil, Poultry Fat, and Cod Liver Oil as Supplemental Lipids in Feeds for Channel Catfish and Golden Shiner. Journal of Applied Aquaculture. 5(3): 47-55.
  35. Rosenlund, G., Obach, A., Sandberg, M.G., Standal, H. and Tveit, K., 2001. Effect of alternative lipid sources on long-term growth performance and quality of Atlantic salmon (Salmo salar). Aquaculture Research. 32(1): 323-328.
  36. Higgs, D.A., Balfrt, S.K., Oakes, J.D., Rowshandeli, M., Skura, B.J. and Deacon, G., 2006. Efficacy of an equal blend of canola oil and poultry fat as an alternate dietary lipid source for Atlantic salmon (Salmo salar ) in sea water. I: effects on growth performance, and whole body and fillet proximate and lipid composition. Aquaculture Research. 32(2): 180-191.
  37. Dossou, S., Koshio, S., Ishikawa, M., Yokoyama, S., Dawood, M.A.O., El Basuini, M.F., Olivier, A. and Zaineldin, A.I., 2018. Growth performance, blood health, antioxidant status and immune response in red seabream (Pagrus major) fed Aspergillus oryzae fermented rapeseed meal (rm-koji). Fish and Shellfish Immunology. 75: 253-262.
  38. Falahatkar, B., Rahdari, A. and Bagherpour, O., 2016. Stress and hematological responses of juvenile silver carp (Hypophthalmicthys molitrix) to handling caused by capturing. Aquatic Physiology and Biotechnology. 4(2): 57-74. (In Persian)
  39. Atmadi, V.P., Hyung, J.R., Hwa Min, B., Gustiano, R. and Young Jin, Y.C., 2016. Effects of different salinity levels on physiological and hematological response of rock bream Oplegnathus fasciatus. Indonesian Aquaculture Journal. 11: 75-79.
  40. Medagoda, N., Kim, M., Gunathilaka, B.E., Seung-Hwan Park, S.H. and Lee, K.J., 2021. Effect of total replacement of fish oil with tallow and emulsifier in diet on growth, feed utilization, and immunity of olive flounder (Paralichthys olivaceus). Journal of World Aquaculture Society. 1: 1-14. https://doi.org/10.1111/jwas.12835.
  41. Navarro, R.D., Navarro, F.K.S.P., Filho, O.P.R., Ferreira, W.M., Pereira, M.M. and Seixas Filho, J.T., 2012. Quality of polyunsaturated fatty acids in Nile tilapias (Oreochromisniloticus) fed with vitamin E supplementation. Food Chemistry. 134(6): 215-218.
  42. Lim, C., Yildirim-Aksoy, M. and Klesius, P., 2011. Lipid and fatty acid requirements of tilapia. North American Journal of Aquaculture. 73: 188-193.
  43. Navarro, D., Solis-Murgas, L., Costa, D., Fortes-Silva, R. and Navarro, F., 2018. Hematological parameters for male Nile tilapia fed different oil sources. Bioscience Journal. 34: 978-984. 10.14393/BJ-v34n2a2018-36725.
  44. Klinger, R.C., Blazer, V.S. and Echevarria, C., 1996. Effects of dietary lipid on the hematology channel catfish, Ictalurus punctatus. Aquaculture. 147: 225-233.
  45. Witeska, M., Dudyk, J. and Jarkiewicz, N., 2015. Haematological effects of 2-phenoxyethanol and etomidate in carp (Cyprinus carpio). Veterinary, Anaesthesia and Analgesia. 42(5): 537-546.
  46. Nobahar, Z., Gholipour Kanani, H. and Jafarian, H.O., 2013. Effect of garlic powder on hematological parameters and growth performance of Huso huso. Journal of Applied Ichthyological Research. 1(3): 39-48. (In Persian)
  47. Hallajian, A., Bahmani, M., Kazemi, R., Dejhandian, S., Yousefi Jourdehi, A. and Khazaie, E., 2015. Study on some blood immunological indices of the juvenile Persian sturgeon, Acipenser persicus caught from depths of 20 to 100 meters in the coasts of the Mazandaran province. Iranian Scientific Fisheries Journal. 24(3): 191-201. (In Persian)
  48. Yar Ahmadi, P., Farahmand, H., Kolango Miyandare, H. and Mirvaghefi, A.R., 2014. Hematological and serum biochemical profile of rainbow trout (Oncorhynchus mykiss) fed immunogen. Journal of Fisheries.67(3): 455-465. (In Persian)
  49. Hossein, A.R., Oraji, H., Yegane, S. and Shahabi, H., 2014. The effect of probiotic bactocell on growth performance, blood parameters and some serum parameters in Caspian salmon (Salmo caspius). Iranian Scientific Fisheries Journal. 23(2): 35-44. (In Persian)
  50. Serajian, Sh., Zamini, A.A., Yousefian, M., Saeedi, A.A. and Jafari, A., 2008. Comparing of some hematological parameters in Golden grey mullet (Liza auratus) fishes in Caspian Sea. Journal of New Technologies in Aquaculture Development. 1(4): 51-60. (In Persian)
  51. Martins, D.A., Valente, L.M.P. and Lall, S.P., 2009. Apparent digestibility of lipid and fatty acids in fish oil, poultry fat and vegetable oil diets by Atlantic halibut, Hippoglossus hippoglossus Aquaculture. 294: 132-137.
  52. Yun, B.A., Xue, M., Wang, J., Fan, Z.Y., Wu, X.F., Zheng, Y.H. and Qin, Y.C., 2013. Effects of lipid sources and lipid peroxidation on feed intake, growth, and tissue fatty acid compositions of largemouth bass (Micropterus salmoides). Aquaculture International. 21(1): 97-110. doi:https://doi.org/ 10.1007/s10499-012-9538-0
  53. Ahmad, W., Stone, D.A.J. and Schuller, K.A., 2013. Dietary fish oil replacement with palm or poultry oil increases fillet oxidative stability and decreases liver glutathione peroxidase activity in barramundi (Lates calcarifer). Fish Physiology and Biochemistry. 39(6): 1631-1640. doi:https://doi.org/ 10.1007/s10695-013-9815-5.
  54. Karimi, M.R., Ebrahimi, E., Mahboobi Soofiani, N. and Masiha, A., 2014. Replacement of Dietary Fish Oil with Flaxseed Oil and its Effects on Hematological and Biochemical Parameters of Rainbow Trout Fingerlings (Oncorhynchus mykiss). World Journal of Fish and Marine Sciences. 6(3): 209-213.
  55. Babalola, T.O.O., Adebayo, M.A., Apata, D.F. and Omotosho, J.S., 2009. Effect of dietary alternative lipid sources on hematological parameters and serum constituents of Heterobranchus longifilis Tropical   Animal   Health   Production. 41: 371-377.
  56. Pablo, M.A., Puertollano, M.A. and Cienfuegos, G.V., 2002. Biological and clinical significance of lipids as modulators of immune functions. Clinical and Diagnostic Laboratary Immunology. 9: 94-950.
  57. Montero, D., Grasso, V., Izquierdo M.S., Ganga, R., Real, F., Tort, L., Caballero, M.J. and Acosta, F., 2008. Total substitution of fish oil by vegetable oils in gilthead sea bream (Sparus aurata) diets: effects on hepatic Mx expression and some immune parameteres. Fish and Shellfish Immunology. 24: 147-155. doi:10.1016/j.fsi.2007.08.002.