جذب زیستی فلز مس توسط باکتری های جنس Ochrobactrum جداسازی شده از رسوبات دریایی خور موسی در خلیج فارس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط زیست، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 گروه محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

10.22034/AEJ.2021.291426.2563

چکیده

آلودگی دریاها توسط فلزات سنگین یکی از عوارض اجتناب ناپذیر صنعتی شدن و توسعه­ی جوامع بشری است. تحقیق حاضر به منظور جداسازی و شناسایی باکتری­ های مقاوم به مس و قابلیت آن ها در جذب زیستی مس انجام شد. نمونه­ های رسوب از 3 ایستگاه در خور­موسی جمع آوری شدند و پس از کشت در محیط حاوی غلظت­ های مختلف مس، دو باکتری مقاوم به غلظت 100 میلی ­گرم در لیتر مس جداسازی شدند و توسط تست های بیوشیمیایی و آنالیز 16S rRNA شناسایی گردیدند. عملکرد این باکتری­ ها در جذب مس در محیط واجد این فلز بررسی شد. هر دو  باکتری گرم منفی، اکسیداز- کاتالاز مثبت و متعلق به جنس Ochrobactrum بودند و تنها در واکنش به تست ­های بیوشیمیایی PD (phenylalanine deaminaseNaCl و اوره تفاوت معنی­ داری نشان دادند. سنجش جذب زیستی غلظت­ های متفاوت مس نشان داد که هر دو سویه بیش از نیمی از فلز مس را در مدت زمان 150 دقیقه در تمامی غلظت ­ها جذب کردند. عملکرد هر دو سویه در غلظت 50 میلی ­گرم در لیتر تقریباً مشابه بود. زیرا سویه های O. tritici strain AN4 و  O. anthropi strain YX0703 به ترتیب 73/5% و 72/6% مس را  حذف کردند. اما در غلظت 200 میلی ­گرم در لیتر، سویه O. anthropi strain YX0703 درصد جذب بالاتری را نشان داد و در عرض 150 دقیقه میزان مس را از 200 میلی ­گرم در لیتر به 2/06±72/08 میلی ­گرم در لیتر کاهش داد. نتایج مطالعه حاضر نشان داد که این دو باکتری دارای قابلیت بالایی در حذف فلز مس هستند و می­ توان از پتانسیل این گروه از باکتری­ ها در کاهش آلودگی فلزات سنگین در خلیج فارس استفاده نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Biosorption of copper by Ochrobactrum sp. isolated from Khor Mousa sediments in Persian Gulf

نویسندگان [English]

  • Hajar Abyar 1
  • Zohreh Roostan 2
1 Department of Environment, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Department of Environment, Science and Research branch, Islamic Azad University, Tehran, Iran
چکیده [English]

The pollution of the marine ecosystems with heavy metals is one of the serious effect of industrialization and development of human society. For exploitation of marine sources and constant development, it’s necessary to invent modern methods for removal of heavy metal pollution. In present study to assess the possibility of removing copper, we aimed to investigate isolation and identification of resistant bacteria and determine their potential to adsorb copper through biosorption. Sediment samples were collected from 3 stations at Khor Mousa and cultured on nutrient agar medium containing different concentrations of copper. Two copper resistance (100 ppm) bacterial strains were isolated and identified through biochemical tests and 16S rRNA analysis. Also bacterial behaviors in adsorbtion of copper were studied. Both strains belonged to Ochrobactrum genus and were gram-negative, catalase and oxidase positive. Different characteristics of bacteria were observed in PD (phenylalanine deaminase), NaCl and Ureas tests. Biosorption measurements showed that strains could adsorb more than half of copper in various concentrations in 150 minutes. The bacterial behaviors were the same in 50 ppm concentration. %73.5 and %72.6 of copper were adsorbed by strains O. tritici strain AN4 and O. anthropi strain YX0703 respectively. However, O. anthropi strain YX0703 reduced the copper concentration from 200 ppm to 72.08 ppm in 150 minutes and showed the highest copper biosorption. The results of present investigation showed that both mentioned bacteria have high ability to remove copper and we can use the potential of this group of bacteria for removal of heavy metal pollution in Persian Gulf.

کلیدواژه‌ها [English]

  • Bacterial strains
  • Biochemical tests
  • Heavy metals
  • Bioremediation
  1. Meleigy, M.A.E., Kasaby, A.M.E. and Osman, N.H., 2010. Microorganisms as a tool in biotechnology of sea water treatment. Australian Journal of Basic and Applied Sciences. 4(6): 1083-1099.
  2. Wang, J. and Chen, C., 2006. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances. 24: 427-451.
  3. Rahmani, M., 2020. Nickel, Copper and Iron concentrations in sediments and Shrimp Macrobrachium nipponense, in Alagol international wetland. Journal of Animal Environment. 12(4): 495-500. DOI: 10.22034/AEJ.2020.129573. (In Persian)
  4. Rauf, A., Javed, M. and Ubaidullah, M., 2009. Heavy metal levels in three major carps (Catla Catla, Labeo Rohita and Cirrhina Mrigala) from the river Ravi, Pakistan. Pakistan Journal. 29(1): 24-26.
  5. Chaalal, O. and Zekri, A.Y., 2005. Uptake of heavy metals by Microorganisms: An Experimental approach. Energy Sources. 27: 87-100.
  6. Hetzer, A., Daughney, C.J. and Morgan, H.W., 2006. Cadmium ion Biosorption by the thermophilic bacteria Geobacillus stearothermophilus and thermocatenulatus. Applied and Environmental Microbiology. 72(6): 4020-4027.
  7. Shahri, E., Sayadi, M.H. and Yousefi, E., 2020. Evaluation of heavy metal pollution of Zinc, Nickel, Chromium, Lead, Cadmium, Copper and Iron in water, surface sediments and algae of the northern shores of Makran Sea in summer 2020. Journal of Animal Environment. 12(4): 593-603. DOI: 10.22034/AEJ.2020.130833. (In Persian)
  8. Hao, B.R., Xing, R., Xu, Z., Hou, Y., Gao, S. and Sun, S., 2010. Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles, Advanced Materials. 22: 2729-2742.
  9. Greaney, K.M., 2005. An assessment of heavy metal contamination in the marine sediments of Las Perlas Archipelago, Gulf of Panama. M.S. Thesis. Heriot-Watt University. 1-114.
  10. Alipour, S., Jafarzadeh, N. and Perham, H., 2007. Investigating environmental problems and pollutant management in Elfin Unit of Bandar Imam Petrochemical Complex. Environmental Science and Technology. 10(4): 246-260. (In Persian)
  11. Soleimani, Z., Salamat, N., Safahieh, A., Savari, A. and Ronagh, M.T., 2018. Pathological Study of the Kidney and Histopathologic Alteration Index in Yellowfin Sea Bream (Achantopagrus latus) as a Bioindicator to Trace Contamination Loading of Persian Gulf. Animal Physiology and Development. 12(3): 11-25. (In Persian)
  12. Gupta, R., Ahuja, P., Khan, S., Saxena, R.K. and Mohapatra, H., 2000. Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Current Science. 78(8): 967-973.
  13. Yan, G. and Viraraghavan, T., 2003. Heavy metal removal from aqueous solution by fungus Mucor rouxii. Water research. 37: 4486-4496.
  14. Igwe, J.C. and Abia, A.A., 2006. A bioseparation process for removing heavy metals from waste water using biosorbents. African Journal of Biotechnology. 5(12): 1167-1179.
  15. Yap, C.K., Rahim-Ismail, A., Ismail, A. and Tan, S.G., 2005. Analysis of heavy metal concentration data (Cd, Cu, Pb, and Zn) in different geochemical fractions of the surface sediments in the straits of Malacca by the use of correlation and multiple linear stepwise regression analyses. Malaysia Applied Biology. 34(2): 51-59.
  16. Yap, C.K., Ismail, A., Pang, B.H., Yeow, K.L., Tan, S.G. and Siraj, S.S., 2006. Elevated heavy metal concentrations in surface sediments collected from the drainages of the SRI serdang industrial ares, Malaysia. Malaysia Applied Biology. 35(2): 35-40.
  17. Dzairi, F.Z., Zeroual, Y., Moutaouakkil, A., Taoufik, J., Talbi, M., Loutfi, M., Lee, K. and Blaghen, M., 2004. Bacterial volatilization of mercury by immobilized bacteria in fixed and fluidized bed bioreactors. Annals of Microbiology. 54(4): 353-364.
  18. Garrity, G.M., Winters, M. and Searles, D.B., 2002. Taxonomic outline of the procaryotes Bergeys manual of systematic bacteriology. 2th Edition. 1-350.
  19. Brenner, D.J., Krieg, N.R. and Staley, J.T., 2005. Bergeys manual of systematic bacteriology. 2th Edition. 2: 1-1136.
  20. Kim, S.U., Cheong, Y.H., Seo, D.C., Hur, J.S., Heo, J.S. and Cho, J.S., 2007. Characterisation of heavy metal tolerance and biosorption capacity of bacterium strain CPB4 (Bacillus spp.). Water Science and Technology. 55(1-2): 105-111.
  21. A.A., Wesam, A.H., Hedayat, M.S. and Ghada, A.A.F., 2009. Biosorption of some heavy metal ions using bacterial species isolated from agriculture waste water drains in Egypt. Journal of Applied Sciences Research. 5(4): 372-383.
  22. Rahman, M.M., 2004. Treatment of refinery wastewater using cross flow membrane bioreactor (CF-MBR). S. Thesis. King Fahad University of Petroleum and Minerals. 1-188.
  23. Bathe, S., Achouak, W., Hartmann, A., Heulin, T., Schloter, M. and Lebunn, M., 2004. Genetic and phenotypic microdiversity of Ochrobactrum Microbiological Ecology. 56: 272-280.
  24. Ozdemir, G., Ozturk, T., Ceyhan, N., Isler, R. and Cosar, T., 2003. Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresource Technology. 90: 71-74.
  25. Sultan, S. and Hasnain, S., 2006. Characterization of an Ochrobactrum intermedium strain STCr-5 manifesting high level Cr(VI) resistance and reduction potential. Enzyme and Microbial Technology. 39: 883-888.
  26. Kader, J., Sannasi, P., Othman, O., Ismail, B.S. and Salmijah, S., 2007. Removal of Cr (VI) from aqueous solutions by growing and non-growing populations of environmental bacterial consortia. Global Journal of Environmental Research. 1(1): 12-17.
  27. Adarsh, V.K., Mishra, M., Chowdhury, S., Sudarshan, M., Thakur, A.R. and Chaudhuri, S.R., 2007. Studies on metal microbe interaction of three bacterial isolate from east Calcutta wetland. Journal of Biological Sciences. 7(2): 80-88.
  28. Ahalya, N., Ramachandra, T.V. and Kanamadi, R.D., 2003. Biosorption of heavy metals. Journal of Chemistry and Environment. 7(4): 71-78.
  29. Green-Ruiz, C., 2006. Mercury (II) removal from aqueous solutions by nonviable Bacillus from a tropical estuary. Bioresource Technology. 97: 1907-1911.
  30. Khanafari, A., Eshghdoost, S. and Mashinchian, A., 2008. Removal of lead and chromium from aqueous solution by Bacillus Circulans Iran Journal Health Science Engineering. 5(3): 195-200.