پیش‌بینی زیستگاه های مطلوب پلنگ‌ایرانی (Panthera pardus saxicolor) در منطقه حفاظت شده کوه‌بافق

نوع مقاله : بوم شناسی

نویسندگان

1 گروه محیط‌ زیست، دانشگاه یزد، صندوق پـستی: 741- 89195

2 گروه مرتع و آبخیزداری، دانشگاه یزد، صندوق پـستی: 741- 89195

چکیده

 پلنگ‌ایرانی (Panthera pardus saxicolor) یکی از گونه‌های در معرض خطر انقراض است که جمعیت و دامنه انتشار آن کاهش یافته است. به­ منظور مدل‌سازی مطلوبیت زیستگاه پلنگ با استفاده از نقاط حضور، از روش بیشینه آنتروپی (MaxEnt) بهره‌گیری شد. لایه‌های اطلاعاتی تهیه شده به‌عنوان متغیرهای مؤثر بر حضور گونه شامل درصد شیب، جهت جغرافیایی، ارتفاع، اشکال توپوگرافی، پوشش‌گیاهی، منابع آبی، متغیرهای توسعه انسانی و تراکم طعمه هستند. نتایج بررسی نشان داد که حدود 21/5 درصد از وسعت منطقهحفاظتشده، زیستگاه مطلوبی برای پلنگ‌ایرانی است. هم ­چنین براساس نقشه مطلوبیت زیستگاه، پلنگ‌ایرانی ارتفاع 2200-1400 متر از سطح دریا و شیب 10 تا 70 درصد را ترجیح می‌دهد. به‌علاوه متغیرهای تراکم طعمه، منابع آب، روستاهای خالی از سکنه و مناطق کوهستانی از عوامل مؤثر بر حضور گونه می‌باشند. ارزیابی مدل باسطح زیر منحنی ROC برابر 0/982، نشان‌دهنده قدرت تشخیص بسیار عالی می‌باشد. زیستگاه‌های مطلوب یک ­پارچه پلنگ در دو منطقه ارسستان و پنج‌درخت واقع شده که بیش ­ترین آن در منطقه امن محدوده مورد تحقیق قرار دارد. جلوگیری از احداث جاده گزوئیه در محدوده امن و زیستگاه‌های مطلوب پلنگ و انجام مطالعات تکمیلی برای تعیین کریدورها و جابجایی پلنگ به خارج از منطقه حفاظت شده از مهم‌ترین پیشنهادات این پژوهش بود.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction leopard (Panthera pardus saxicolor) habitat suitability in Kouh-e- Bafgh Protected Area

نویسندگان [English]

  • Jalil Sarhangzadeh 1
  • Ali Akbar Karimian 2
  • Hassan Akbari 1
1 Departement of Environment, Faculty of Natural Resources, Yazd University, Yazd, Iran.
2 Departement of Watershed, Faculty of Natural Resources, Yazd University, Yazd, Iran
چکیده [English]

Persian leopard (Panthera pardus saxicolor) is an endangered species that it’s population and distribution have decreased during last decades. Maximum Entropy (MaxEnt) approach that there is in MaxEnt software were used to and MaxEnt software for habitat suitability modeling of this species. Information layers were determined as the affecting variables on this species include the slope, aspect, elevation, forms of topography, vegetation, water resources, human development variables (villages and roads) and prey density. Results showed that 21.5 percent of this Protected Area were suitable for Leopard. Based on habitat suitability map, Persian Leopard preferred elevation range of 1400 to 2200 meters above sea level and 10 to 70 percent of slop. Furthermore variables of prey density, water sources (springs), uninhabited villages and mountainous areas are also important factors in the presence of this species. Results of model evaluation using the area under the curve (ROC= 0.982) showed that prediction of this model are much better than random condition. Leopard integrated suitable habitats, is in two regions of Orsestan and Panj Derakht that located mostly in Corn zone of this research area. The most suggestions of this research were 1) preventing of Gazoueie road establish in the core zone and suitable habitats of Leopard, and, 2) determining of corridors and movement routs of the species outside of the protected area in future studies.

کلیدواژه‌ها [English]

  • Leopard
  • Maximum Entropy
  • Habitat suitability
  • Kouh-e- Bafgh Protected Area
  1. امیدی، م.؛ کابلی، م.؛ کرمی، م.؛ سلمان‌ماهینی، ع. و حسن‌ زاده‌کیابی، ب.، 1389. مدل‌سازی مطلوبیت زیستگاه پلنگ‌ایرانی (Panthera pardus saxicolor) روش تحلیل عامل آشیان ‌بوم ‌شناختی (ENFA) در پارک ملی کلاه‌قاضی. فصلنامه علوم و تکنولوژی محیط‌زیست. دوره 12، شماره 1، صفحات 137 تا 148.
  2. رضایی ­خوزانی، ع.؛ کابلی، م.؛ اشرفی، س. و اکبری، ح.، 1394. بررسی هم­ پوشانی رژیم غذایی یوزپلنگ آسیایی و پلنگ‌ایرانی در منطقه حفاظت ­شده کوه‌بافق. دومین همایش یافته‌های نوین در محیط‌ زیست و اکوسیستم‌های کشاورزی. تهران. پژوهشکده انرژی‌های نو و محیط‌زیست دانشگاه تهران.
  3. سرهنگ‌ زاده، ج.؛ ایران­ نژادپاریزی، م.؛ مصلح ­آرانی، ا. و اکبری، ح.، 1395. بررسی وضعیت کمی و کیفی و ژنتیکی و شرایط استقرار رویشگاه‌های گیاه ارس در منطقه حفاظت شده کوه‌بافق. شرکت سنگ آهن مرکزی ایران.
  4. سرهنگ‌ زاده، ج.؛ یاوری، ا.؛ همامی، م.؛ جعفری، ح. و شمس اسفندآباد، ب.، 1392. مدل‌سازی مطلوبیت زیستگاه قوچ و میش  Ovis Orientalis  با استفاده از رویکرد تحلیل عامل آشیان بوم‌شناختی در منطقه حفاظت شده کوه‌بافق. مجلـه پـژوهش‌هـای محیط‌ زیست. شماره 8، صفحات 69 تا 82.
  5. همامی، م.؛ اسمعیلی، س. و سفیانیان، ع.،1394. پیش‌بینی پراکنش یوزپلنگ آسیایی، پلنگ‌ایرانی و خرس قهوه‌ای در پاسخ به متغیرهای محیطی در استان اصفهان. بوم‌شناسی کاربردی. دوره ۴، جلد ۴ شماره ۱۳، صفحات ۵۱ تا ۶۴.
  6. عرفانیان، ب.؛ میرکریمی، س.؛ سلمان ­ماهینی، ع. و رضایی، ح.، 1389. نقش روگذر و زیرگذر در جبران آثار منفی تکه‌تکه شدن زیستگاه‌ها، مطالعه موردی: پلنگ پارک ملی گلستان. محیط‌زیست و توسعه. سال 1، شماره 1، صفحات 35 تا 42.
  7. قدوسی، آ.؛ عشایری، د؛. مشیری، ح؛. قدیریان، ط؛. خالقی حمیدی، ا؛. قشقایی، ع؛. حمزه‌پور،م؛. ظهرابی، ح.؛ جولایی، ل. و خوروزیان، ا.، 1387. پروژه پلنگ‌ایرانی. گزارش سالیانه 87-1386. انجمن طرح سرزمین.
    1. Bailey, J.A., 1984. Principles of wildlife management. New York, NY: John Wiley and. Sons. 373 p.
    2. Caughley, G. and Sinclair, A.R.E., 1994. Wildlife Ecology and Management. Blackwell Science, Oxford, UK. 334 p.
    3. Beauvais, G.P.; Keinath D.A.; Hernandez P.; Master L.; Thurston R., 2006. Element Distribution Modeling. University of Wyoming.42 p.
    4. Brito, J.C.; Acosta, A.L.; Álvares, F. and Cuzin, F., 2009. Biogeography and conservation of taxa from remote regions: An application of ecological-niche based models and GIS to North-African canids. Biological Conservation. Vol. 142,
      pp: 3020-3029.
    5. Ceballos, G. and Ehrlich, P.R., 2002. Mammal population losses and the extinction crisis. Science. Vol. 296, pp: 904-907.
    6. Doco, T., 2007. Modeling of species geographic distribution for assessing present needs for the ecological networks: case study of Fuji region and Tanzawa region, Japan. Degree of Master. International Institue for Geo-Information Science and Earth Observation Enschede. pp: 1-112.
    7. Erfanian, B.; Mirkarimi, S.H.; Mahini, A.S. and Rezaei, H.R., 2013. A Presence-Only Habitat Suitability Model for Persian Leopard Panthera pardus Saxicolor in Golestan National Park, Iran. Wildlife Biology. Vol. 19, pp: 170-178.
    8. Farhadinia, M.S.; Ahmadi, M.; Sharbafi, E.; Khosravi, S.; Alinezhad, H. and Macdonald, D.W., 2015. Leveraging trans-boundary conservation partnerships: Persistence of Persian leopard (Panthera pardus saxicolor) in the Iranian Caucasus. Biological Conservation. Vol. 191, pp: 770-778.
    9. Fahrig, L. and Merriam G., 1985. Habitat patch connectivity and population survival. Ecology. Vol. 66,
      pp: 1762-1768.
    10. Gavashelishvili, A. and Lukarevskiy, V., 2008. Modelling the habitat requirements of leopard Panthera pardus in west and central Asia. Journal of Applied. Vol. 45, pp: 579-588.
    11. Geoffrey, M.; Carter, E.D.S. and David Breininger,
      R., 2006.
      A rapid approach to modeling species-habitat relationships, Biological Conservation. Vol. 127, No. 2,
      pp: 237-244.
    12. Gibbs, J.P., 1998. Amphibian movements in response to forest edges, roads, and streambeds in southern New England. Journal of Wildlife Management. Vol. 62, pp: 584-589.
    13. Gormley, A.; Forsyth, D.; Griffioen, P.; Lindeman, M.; Ramsey, D.; Scroggie, M. and Woodford, L., 2011. Using presence-only and presence-absence data to estimate the current and potential distributions of established invasive species. Journal of Applied Ecology. Vol. 48, pp: 25-34.
    14. Groves, C.R., 2003. Defining a Conservation Blueprint. Island Press, Washington, DC.
    15. IUCN. 2014. The IUCN Red List of Threatened Species. Version 2014.2. .
    16. Maiorano, L.; Falcucci, A. and Boitani, L., 2006. Gap analysis of terrestrial vertebrates in Italy: priorities for conservation planning in a human dominated landscape. Biol. Conserv. Vol. 133, pp: 455-473.
    17. Morato, R.G.; Ferraz, K.M.P.Md.B.; de Paula R.C. and Campos, C.Bd., 2014. Identification of Priority Conservation Areas and Potential Corridors for Jaguars in the Caatinga Biome. Brazil. PLoS One 9, e92950.
    18. Parra-Quijano, M.; Iriondo, J.M. and Torres, E., 2012. Improving representativeness of genebank collections through species distribution models, gap analysis and ecogeographical maps. Biodivers Conserv. Vol. 21, pp: 79-96.
    19. Peterson, A.T.; Papes, M. and Eaton, M., 2007. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Vol. 30,
      pp: 550-560.
    20. Phillipes, S.J., 2012. A brief tutorial on Maxent, versions.
       3.3.3. Available online: http://www.cs. princeton.edu /~schapire/maxent/.
    21. Phillips, S.J.; Anderson, R.P. and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling. Vol. 190, pp: 231-259.
    22. Phillipes, S.J.; Dudík, M. and Schapire, R.E., 2004. A maximum entropy approach to species distribution modeling. In Proceedings of the 21st International Conference on Machine Learning; ACM Press: NewYork, USA. pp: 655-662
    23. Phillips, S.J.; Dudik, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J. and Ferrier, S., 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications. Vol. 19, pp: 181-197.
    24. Rabinowitz, A. and Zeller, K.A., 2010. A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol Conserv. Vol. 143, pp: 939-945.
    25. Reh, W. and Seitz, A., 1990. The influence of land use on the genetic structure of populations of the common frog. Biological Conservation. Vol. 54, pp: 239-249.
    26. Ripple, W.J.; Estes, J.A.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P.; Schmitz, O.J.; Smith, D.W.; Wallach, A.D. and Wirsing, A.J., 2014. Status and ecological effects of the world’s largest carnivores.
      Science 343:151.
    27. Sarhangzadeh, J.; Akbari, H. and Shams Esfandabad,
      B., 2015.
      Ecological niche of the Asiatic Cheetah (Acinonyx jubatus venaticus) in the arid environment of Iran (Mammalia: Felidae). Zoology in the Middle East. Vol. 61, No. 2, pp: 109-117.
    28. Sarhangzadeh, J.; Yavari, A.; Hemami, M.; Jafari, H. and Shams Esfandabad, B., 2013. Habitat suitability modeling for wild goat (Capra aegagrus) in a mountainous arid area, central Iran. Caspian J. Env. Sci. Vol. 11, No. 1, pp: 41.
    29. Swanepoel, L.H.; Lindesy, P.; Somers, M.J.; Hoven, W. and Dalerum, W., 2013. Extent and fragmentation of suitable leopard habitat in South Africa. Vol. 16, pp: 41-50.
    30. Swanepoel L.H.; Somers, M.J.; Hoven, W.; Schiess Meier, M.; Owen, C.; Snyman, A.; Martins, Q.; Senekal, C.; Camacho, G.; Boshoff, W. and Dalerum, F.,2015. Survival rates and causes of mortality of leopards Panthera pardus in southern Africa. Oryx. Vol. 49, No. 4, pp: 595-603.
    31. Taghdisi, M.; Mohammadi, A.; Nourani, E.; Shokri, S.; Rezaei, A. and Kaboli, M., 2013. Diet and habitat use of the endangered Persian leopard (Panthera pardus saxicolor) in northeastern Iran. Vol. 37, pp: 554-561.
    32. Wilson, P.J. and Provan, J., 2003. Effect of habitat fragmentation on levels and patterns of genetic diversity in natural populations of peat moss Polytrichum commone. Proceedings of the Royal Society Series B: Biological Sciences. Vol. 270, pp: 881-886.
    33. Yost, A.C.; Petersen, S.L.; Gregg, M. and Miller, R., 2008. Predictive modeling and mapping sage grouse (Centrocercus urophasianus) nesting habitat using Maximum Entropy and a long-term dataset from Southern Oregon. Ecol. Inform.
      Vol. 3, pp: 375-386.