القای آسیب ژنتیکی در ماسل آب شیرین Anodonta cygnea تحت مواجهه با نانو اکسید روی

نوع مقاله : بوم شناسی

نویسندگان

گروه شیلات، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، صندوق پستی: 487-49175

چکیده

با توجه به کاربردهای زیستی گسترده نانوذرات روی طی سال­ های اخیر، نگرانی­ های جدی در خصوص اثرات این مواد بر سلامت محیط زیست ایجاد گشته است. در پژوهش حاضر، به ارزیابی پتانسیل ژنوتوکسیک نانوذرات اکسید روی در ماسل Anodonta cygneaبه ­عنوان گونه ­ای با اهمیت اکولوژیکی بالا پرداخته شد. بدین­ منظور، ماسل ­ها به ­مدت 14 روز در معرض غلظت­ های 0 (شاهد)، 2/5، 25 و 50 میلی­ گرم بر لیتر نانو اکسید روی قرار گرفتند. جهت ارزیابی آسیب DNA از طریق الکتروفورز ژل سلول منفرد، از بافت­ های آبشش و هپاتوپانکراس طی روزهای 7 و 14 مواجهه نمونه ­برداری به ­عمل آمد. هم­ چنین آزمون ریزهسته­ ها با استفاده از بافت آبشش ماسل­ ها طی روزهای 7 و 14 انجام و فراوانی ریزهسته ­ها تعیین گردید. با توجه به نتایج، مواجهه با نانوذرات اکسید روی منجر به القای بروز ریزهسته­ ها و آسیب DNA در A. cygneaگردید به ­نحوی که فراوانی ریزهسته­ ها و مقادیر پارامترهای طول، مومنتوم و درصد DNA دنباله و هم­ چنین شاخص آسیب ژنتیکی در تمامی تیمارهای مواجهه یافته با نانوذرات اکسید روی در مقایسه با گروه شاهد افزایش یافت. هم­ چنین با افزایش غلظت و زمان مواجهه با نانوذرات اکسید روی، روند افزایشی در میزان آسیب وارد شده مشاهده شد. در مقایسه بین بافت ­های مورد بررسی نیز، بافت هپاتوپانکراس حساسیت بالاتری نسبت به سمیت ژنتیکی نانو اکسید روی نشان داد. با توجه به نتایج حاصل از پژوهش حاضر می ­توان بیان داشت که نانو اکسید روی دارای اثرات ژنوتوکسیک بالقوه بر ماسل A. cygnea می ­باشد.   

کلیدواژه‌ها


عنوان مقاله [English]

Genetic damage induction in freshwater mussel Anodonta cygnea under zinc oxide nanoparticles

نویسندگان [English]

  • Hadise Kashiri
  • Sara Jafari
  • Amir Qadermarzi
Department of Fisheries, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, PO Box: 487-49175
چکیده [English]

Considering the wide biological application of zinc nanoparticles during the recent years, serious concerns have been emerged about the effects of these materials on environmental health. In the present study, the genotoxic potential of zinc oxide nanoparticles were investigated in the mussel Anodonta cygne as an ecologically important species. For this, the mussels were exposed to 0, 2.5, 25 and 50 mg L-1 zinc oxide nanoparticles during 14 days. To assess the DNA damage through single cell gel electrophoresis, sampling was done from the gill and hepatopancreas tissues on the 7th and 14th days of exposure. Micronucleus assay was also done using the gill tissue on the 7th and 14th days and the micronuclei frequency was determined. According to the results, exposure to zinc oxide nanoparticles led to the micronuclei induction and DNA damage in A. cygnea so that the micronuclei frequency and the values of the parameters of tail length, moment and DNA percentage as well as the genetic damage index increased in all treatments exposed to zinc oxide nanoparticles as compared to the control. An increasing trend in the induced damage was also observed with the increase in exposure concentration and time. In comparing the investigated tissues, the hepatopancreas tissue exhibited more sensitivity to the genotoxicity of zinc oxide nanoparticles. According to the results from the present study, it could be stated that zinc oxide nanoparticles have potential genotoxic effects on the mussel A. cygnea.

کلیدواژه‌ها [English]

  • DNA damage
  • micronucleus
  • Mussel
  • Nano zinc oxide
  1. Ahamed, M.; Siddiqui, M.A.; Akhtar, M.J.; Ahmad, I.; Pant, A.B. and Alhadlaq, H.A., 2010. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem. Biophys. Res. Commun. Vol. 396, pp: 578-583.
  2. Asghar, M.S.; Qureshi, N.A.; Jabeen, F. and Khan,S., 2016. Genotoxicity and oxidative stress analysis in the Catla catla treated with ZnO NPs. JBES. Vol. 8, pp: 91-101.
  3. Baker, T.J.; Tyler, C.R. and Galloway, T.S., 2014. Impacts of metal and metal oxide nanoparticles on marine organisms. Environ. Pollut. Vol. 186, pp: 257-271.
  4. Bhatt, I. and Tripathi, B.N., 2011. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere. Vol. 82, pp: 308-317.
  5. Bogutska, К.І.; Sklyarov, Y.P. and Prylutskyy, Y.I., 2013. Zinc and zinc nanoparticles: biological role and application in biomedicine. Ukr. Bioorg. Acta. Vol. 1, pp: 9-16.
  6. Canesi, L.; Ciacci, C.; Fabbri, R.; Marcomini, A.; Pojana, G. and Gallo, G., 2012. Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar. Environ. Res. Vol. 76, pp: 16-21.
  7. Chojnacki, J.C.; Grzeszczyk-Kowalska, A. and Buczek, W., 2009. Biometrics of the swan mussels Anodonta cygnea in the southwest part of the Szczecin Lagoon in 2007. EJPAU. Vol.  12, No. 4, pp: #02.
  8. Chojnacki, J.C.; Rosinska, B.; Rudkiewicz, J. and Smoła, M., 2011. Biometrics of the Swan Mussel Anodonta cygnea. Polish J. of Environ. Stud. Vol. 20, No. 1, pp: 225-230.
  9. Daughton, C.G., 2004. Non-regulated water contaminants: emerging research. Environ. Impact Assess. Rev. Vol, 24,pp: 711-732.
  10. Dhawan, A.; Bajpayee, M. and Parmar, D., 2009. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell. Biol. Toxicol. Vol. 9, pp: 5-32.
  11. Dumont, E.; Johnson, A.C.; Keller, V.D.J. and Williams, R.J., 2015. Nano silver and nano zinc-oxide in surface waters - Exposure estimation for Europe at high spatial and temporal resolution. Environ. Pollut Vol. 196, pp:341-349.
  12. Eskandari, S.; Mozdarani, H.; Mashinchian, A.; MoradiM. and Shahhosseiny, H., 2012. Cytogenetic damage induced by crude oil in Anodonta cygnea (mollusca, bivalvia) assessed by the comet assay and micronucleus test. IJMSE. Vol. 2, No. 4, pp: 215-224.
  13. Fahmy, S. and Sayed, D. E., 2017. Toxicological perturbations of zinc oxide nanoparticles in the Coelatura aegyptiaca mussel. Toxico. Ind.l Heal. Vol. 33, pp: 564-575.
  14. Falfushynska, H.; Gnatyshyna, L.; Yurchak, I.; Sokolova, I. and Stoliar, O., 2015. The effects of zinc nanooxide on cellular stress responses of the freshwater mussels Unio tumidus are modulated by elevated temperature and organic pollutants. Aquat. Toxicol. Vol. 162, pp: 82-93.
  15. Fenech, M., 2006. Cytokinesis-block micronucleus assay evolves into a cytome assay of chromosomal instability, mitotic dysfunction and cell death. Mutat. Res. Vol. 600,pp: 58-66.
  16. Gagne, F.; Turcotte, P.; Auclair, J. and Gagnon, C., 2013. The effects of zinc oxide nanoparticles on the metallome in freshwater mussels. Comp. Biochem. Physiol. Vol. 158, pp: 22-28.
  17. Gagne, F.; Auclair, J.; Trepanier, S.; Turcotte, P.; Pilote, M. and Gagnon, C., 2016. The impact of zinc oxide nanoparticles in freshwater mussels exposed to municipal effluents. ISJ. Vol. 13, pp: 281-290.
  18. Gagnon, C.; Pilote, M.; Turcotte, P.; Andre, C. and Gagne, F., 2016.  Effects of exposure to zinc oxide nanoparticles in freshwater mussels in the presence of municipal effluents.  ISJ. Vol. 13, pp: 140-152.
  19. Handy, R.; Owen, R. and Valsami-Jones, E. 2008. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology. Vol. 17, pp: 315-325.
  20. Gravato, C. and Santos, M.A., 2003. Genotoxicity biomarkers’ association with B(a)P biotransformation in Dicentrarchus labrax L. Ecotoxicol. Environ. Saf. Vol. 55, pp: 352-358.
  21. Jaiswal, M.; LaRusso, N.F.; Burgart, L.J. and Gores, G.J., 2000. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangio carcinoma cells by a nitric oxide dependent mechanism. Canc Res. Vol. 60, pp: 184-190.
  22. Karlsson, H.L., 2010. The comet assay in nanotoxicology research. Anal. Bioanal. Chem. Vol. 398, pp: 651-666.
  23. Konca, K.; Lankoff, A.; Banasik, A.; Lisowska, H.; Kuszewski, T.; Gozdz, S.; Koza, Z. and Wojcik, A.A. 2003. Cross-platform public domain PC image-analysis program for the comet assay. Mut. Res. Vol. 534, pp: 15-20.
  24. Kopji, G., 2011. The endangered swan mussel Anodonta cygnea (Linnaeus, 1758) is threatened by the common otter Lutra lutra. Folia Malacol. Vol. 19, No. 3, pp: 191-192.
  25. Lanzano, T.; Bertram, M.; de Palo, M.; Wagner, C.; Zyla, K. and Graedel, T.E., 2006. The contemporary European silver cycle. Resour. Conserv. Recy. Vol. 46, pp: 27-43.
  26. Li, K.; Zhao, X.; Hammaer, B.K.; Du, S. and Chen, Y., 2013. Nanoparticles Inhibit DNA Replication by Binding to DNA: Modeling and Experimental Validation. ACS Nano. Vol. 7, No. 11, pp: 9664-9674.
  27. Li, J., 2016. Comparative behavior of nano ZnO, bulk ZnO and ionic zinc in marine environment and effect upon biological target organisms such as primary producers (marine algae Tetraselmis suecia and Phaeodactylum tricornutum) and filter feeder (Mediterranean mussels Mytilus galloprovincialis) chronically exposed. Ph.D. Thesis, University of Degli Studi Napoli. 119 P.  
  28. Lydeard, C.; Cowie, R.H.; Ponder, W.F.; Bogan, A.E.; Bouchet, P.; Clark, S.A.; Cummings, K.S.; Frest, T.J.; Gargominy, O.; Herbert, D.G.; Hershler, R.; Perez, K.E.; Roth, B.; Seddom, M.; Strong, E.E. and Thompson, F.G., 2004. The Global decline of nonmarine mollusks. Bioscience. Vol. 54, No. 4, pp: 321-328.
  29. Ma, L.; Liu, B.; Huang, P.Zhang, X. and Liu, J.1., 2016. DNA Adsorption by ZnO Nanoparticles near Its Solubility Limit: Implications for DNA Fluorescence Quenching and DNAzyme Activity Assays. Langmuir. Vol. 32, pp: 5672-5680.
  30. Martinez, G.R.; Loureiro, A.P.M.; Marques, S.A.; Miyamoto, S.; Yamaguchi, L.F. and Onuki, J., 2003. Oxidative and alkylating damage in DNA. Mutat. Res. Vol. 544, No. 2. pp: 115-127.
  31. Midander, K.; Cronholm, P.; Karlsson, H.L.; Elihn, K.; Moller, L.; Leygraf, C. and Wallinder, I.O., 2009. Surface characteristics, copper release, and toxicity of nano-and micrometer-sized copper and copper (II) oxide particles: a cross-disciplinary study. Small. Vol. 5, No. 3, pp: 389-399.
  32. Oberdorster, G.; Oberdorster, E. and Oberdorster, J., 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. Vol. 113, No. 7, pp: 823-39.
  33. Park, S.J.; Park, Y.C.; Lee, S.W.; Jeong, M.S.; Yu, K.N. and Jung, H., 2011. Comparing the toxic mechanism of synthesized zinc oxide nanomaterials by physicochemical characterization and reactive oxygen species properties. Toxicol. Lett. Vol. 207, No. 3, pp: 197-203.
  34. Pati, R.; Mehta, R.K.; Mohanty, S.; Padhi, A.; Sengupta, M.; Vaseeharan, B.; Goswami, C. and Sonawane, A., 2014. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine. Vol. 10, pp: 1195-1208.
  35. Pati, R.; Das, I.; Mehta, R.K.; Sahu, R. and Sonawane, A., 2016. Zinc-oxide nanoparticles exhibit genotoxic, clastogenic, cytotoxic and actin depolymerization effects by inducing oxidative stress responses in macrophages and adult mice. Toxicol. Sci. Vol. 150, No. 2, pp: 454-472.
  36. Pourang, N.; Richardson, C.A. and Mortazavi, M.S., 2009. Heavy metal concentrations in the soft tissues of swan mussel (Anodonta cygnea) and surficial sediments from Anzali wetland, Iran. Environ. Monit. Assess. Vol. 163, No. 1-4, pp: 195-213.
  37. Ramadan, H. and Mohamed, H., 2016. Studies on the genotoxicity behavior of silver nanoparticles in the presence of heavy metal cadmium chloride in mice. J. Nanomater. Vol. 2016, pp: 1-12.
  38. Rosinska, B.; Chojnacki, J.C.; Lewandowska, A.; Matiejczuk, A. and Samiczak, A., 2008. Biometrics of swan mussels (Anodonta cygnea) from chosen lakes in Pomeranian Region. Limnol. Rev. Vol. 8, No. 1-2, pp: 79-84.
  39. Royal Commission on Environmental Pollution. 2008. Novel Materials in the Environment: The case of nanotechnology. London UK: Royal Commission.
  40. Sabir, S.; Arshad, M. and Chaudhari, S.K., 2014. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci. World J. Vol. 2014, pp: 1-8.
  41. Saleh, K. and Sarhan, M.A.A., 2007. Clastogenic analysis of chicken forms using micronucleus test in peripheral blood. J. Appl. Sci. res. Vol. 3, No. 12, pp: 1646-1649.
  42. Saliani, M.; Jalal, R. and Goharshadi, E.K., 2016. Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells. Nanomed. J. Vol. 3, No. 1, pp: 1-14.
  43. Simberloff, D., 2012. Sustainability of biodiversity under global changes, with particular reference to biological invasions. In: Weinstein MP, Turner RE, editors. Sustainability science: The emerging paradigm and the urban environment. New York: Springer. pp: 139-157.
  44. Singh, N.; Nelson, B.C.; Scanlan, L.D.; Coskun, E.; Jaruga, P. and Doak, S.H., 2017. Exposure to Engineered Nanomaterials: Impact on DNA Repair Pathways. Int. J. Mol. Sci. Vol. 18, pp: 1-15. 
  45. Siu, W.H.L.; Caob, J.; Jack, R.W.; Wu, R.S.S.; Richardson, B.J.; Xu, L. and Lam, P.K.S., 2004. Application of the comet and micronucleus assays to the detection of B[a]P genotoxicity in haemocytes of the green lipped mussel. Aquat. Toxicol. Vol. 66, pp:  381-392.
  46. Sousa, R.; Varandas, S.; Cortes, R.; Teixeira, A.; Lopes Lima, M.; Machado J. and Guilhermino, L., 2012.  Massive die-offs of freshwater bivalves as resource pulses. Int. J. Limnol. Vol. 48, pp: 105-112.
  47. Tice, R.R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J.C. and Sasaki, Y.F., 2000. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicologytesting. Envi. Mol. Mutagen. Vol. 35, pp: 206-221.
  48. Toyokuni, S., 1998. Oxidative stress and cancer: the role of redox regulation. Biotherapy. Vol. 11, No. 2-3, pp: 147-154.
  49. Ullah, S.; Begum, M.; Ahmad, S. and Dhama, K., 2016. Genotoxic effect of Endosulfan at sublethal concentrations in Mori (Cirrhinus mrigala) fish using single cell gel electrophoresis assay. Int. J. Pharm. Vol. 12, pp: 169-176.
  50. Ullah, S.; Hasan, Z.; Zorriehzahra, M.J. and Ahmad, S., 2017. Diognosis of endosulfan induced DNA damage in rohu using comet assay. IJFS. Vol. 16, No. 1, pp: 138-149.
  51. Vaghun, C.C., 2010. Biodiversity Losses and Ecosystem Function in Freshwaters: Emerging Conclusions and Research Directions. BioScience, Vol. 60, pp: 25-35.
  52. VROM (Ministry of Housing Spatial Planning and the Environment). 2008. Risk Assessment - Zinc Oxide Part 1: Environment. Bilthoven, Netherlands.
  53. Zhao, X.; Wang, S.; Wu, Y.; You, H. and Lv, L., 2013. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat. Toxicol. Vol. 136, pp: 49-59.