Investigation of efflux pump -activated fluoroquinolone resistance in Pseudomonas aeruginosa multiple drug resistant isolates by carbonyl cyanide-m-chlorophenyl hydrazone inhibitor (CCCP)

Document Type : Other

Authors

1 Department of Microbiology, Faculty of Biological Sciences, Varamin-Pishva branch, Islamic Azad University of Varamin, Iran

2 Department of Nursing, Faculty of Medical Sciences, Varamin-Pishva branch, Islamic Azad University of Varamin, Iran

Abstract

One of the problems with Pseudomonas aeruginosa-related infections is prevalence of Multiple-Drug Resistant isolates. Bacterial efflux pumps are capable of a wide range of antibiotics and detergents to efflux out of the cell. The aim of study was determining efflux pumps activity in fluoroquinolones resistant MDR strains of Pseudomonas aeruginosa. 50 strains ofPseudomonas aeruginosa were isolated from clinical specimens of patients were admitted to Milad hospital and diagnosed by biochemical tests. Antibiotic susceptibility was determined by disc diffusion method according to CLSI. After determining the MDR isolates, for evaluation of efflux pump activity the MIC of ciprofloxacin, levofloxacin was determined before and after treatment by CCCP inhibitor. 17(34%) MDR strains of Pseudomonas aeruginosa that were resistant to more than two classes of antibiotics were detected. Among flouroqinolon MDR strains of Pseudomonas aeruginosa 2 (11.8%) and 3(17.64%) had MIC reduction of at least 4 times and more for ciprofloxacin and lovofloxacin after carbonyl cyanide-m-chlorophenyl hydrazone (CCCP) effect, respectively. The frequency of MDRPseudomonas aeruginosa are low. Only 4 isolates among MDR bacteria had efflux pump activity. So the efflux pump is not major mechanism for resistance to ciprofloxacin and lovofloxacin among these isolates and further studies about other resistance mechanism is recommended. 

Keywords


  1. Abdi-Ali, A.; Mohammadi-Mehr, M. and Alaei, Y.A., 2006. Bactericidal activity of various antibiotics against biofilm-producing Pseudomonas aeruginosa. International Journal of Antimicrobial Agents. Vol. 27, pp:196-200.
  2. Adabi, M.; Talebi-Taher, M.; Arbabi, L.; fshar, M.; Fathizadeh, A.S.; Minaeian, S.; Moghadam-Maragheh, N. and Majidpour, A., 2015. Spread of efflux pump overexpressing-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa by using an efflux pump inhibitor. Infection and chemotherapy. Vol. 47, pp:98-104.
  3. Akram, M., M. Shahid, and A. U. Khan. 2007. Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in JNMC Hospital Aligarh, India. Annals of clinical microbiology and antimicrobials 6:4.
  4. Ali, I.; Kumar, N.; Ahmed, S. and Dasti, J.I., 2014. Antibiotic resistance in uropathogenic E. coli strains isolated from non-hospitalized patients in Pakistan. Journal of clinical and diagnostic research: JCDR 8:DC01.
  5. Amaral, L. and Fanning, S., 2011. An original deal for new molecule: reversal of efflux pump activity, a rational strategy to combat gram-negative resistant bacteria. Current medicinal chemistry. Vol. 18, pp: 2969-2980.
  6. Arvanitidou, M.; Katikaridou, E.; Douboyas, J. and Tsakris, A., 2005. Prognostic factors for nosocomial bacteraemia outcome: a prospective study in a Greek teaching hospital. Journal of Hospital Infection. Vol. 61, pp:219-224.
  7. Chanawong, A.; M'zali, F.; Heritage, H.J.; Lulitanond, A. and Hawkey, P.M., 2001. SHV-12, SHV-5, SHV-2a and VEB-1 extended-spectrum β-lactamases in Gram-negative bacteria isolated in a university hospital in Thailand. Journal of Antimicrobial Chemotherapy. Vol. 48, pp:839-852.
  8. Farshad, S.; Ranjbar, R.; Japoni, A.; Hosseini, M.; Anvarinejad, M. and Mohammadzadegan, R., 2012. Microbial Susceptibility, Virulance Factor, and Plasmid profiles of Uropathogenic E. Coli Strains Isolated from Children in Jahrom Arch Iran Med. Vol. 15,5 p.
  9. Jefferies, J.; Cooper, T.; Yam, T. and Clarke, S., 2012. Pseudomonas aeruginosa outbreaks in the neonatal intensive care unit a systematic review of risk factors and environmental sources. Journal of medical microbiology. Vol. 61, pp: 1052-1061.
  10. Kishk, R.; Mandour, M.; Hessam, W. and Nemr, N., 2014. Efflux pump genes and chlorhexidine resistance: Clue for Klebsiella pneumoniae infections in intensive care units, Egypt. African Journal of Microbiology Research. Vol. 8, pp: 2162-2167.
  11. Kristiansen, J.E. and Amaral, L., 1997. The potential management of resistant infections with non-antibiotics. The Journal of antimicrobial chemotherapy. Vol. 40, pp: 319-327.
  12. Kumar, A. and Schweizer, H.P., 2005. Bacterial resistance to antibiotics: active efflux and reduced uptake. Advanced drug delivery reviews. Vol. 57, pp: 1486-1513.
  13. Lomovskaya, O.; Lee, A.; Hoshino, K.; Ishida, H.; Mistry, A.; Warren, M.S.; Boyer, E.; Chamberland, S. and Lee, V.J., 1999. Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. Vol. 43, pp: 1340-1346.
  14. Mahamoud, A.; Chevalier, J.; Alibert-Franco, S.; Kern, W.V. and Pagès, J.M., 2007. Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. Journal of Antimicrobial Chemotherapy. Vol. 59,
    pp:1223-1229.
  15. Nehme, D. and Poole, K., 2007. Assembly of the MexAB-OprM multidrug pump of Pseudomonas aeruginosa: component interactions defined by the study of pump mutant suppressors. Journal of bacteriology. Vol. 189,
    pp: 6118-6127.
  16. Nikasa, P.; Abdi-Ali, A.; Rahmani-Badi, A. and Al-Hamad, A., 2013. In vitro Evaluation of Proton Motive Force-Dependent Efflux Pumps Among Multidrug Resistant Acinetobacter baumannii Isolated From Patients at Tehran Hospitals. Jundishapur Journal of Microbiology. Vol.6.
  17. Pakzad, I.; Karin, M.Z.; Taherikalani, M.; Boustanshenas, M. and Lari, A.R., 2013. Contribution of AcrAB efflux pump to ciprofloxacin resistance in Klebsiella pneumoniae isolated from burn patients. GMS hygiene and infection control. Vol. 8.
  18. Piddock, L.J., 2006. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clinical microbiology reviews. Vol. 19, pp:382-402.
  19. Poole, K., 2000. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrobial Agents and Chemotherapy. Vol. 44, pp:2233-2241.
  20. Pourmand, M.R.; Yousefi, M.; Salami, S.A. and Amini, M., 2014. Evaluation of expression of NorA efflux pump in ciprofloxacin resistant Staphylococcus aureus against hexahydroquinoline derivative by Real-Time PCR. Acta Medica Iranica. Vol. 52, 424 p.
  21. Quinn, P.J.; Markey, B.K.; Leonard, F.C.; Hartigan, P.; Fanning, S. and Fitz Patrick, E., 2011. Veterinary microbiology and microbial disease. John Wiley & Sons.
  22. Rana, T.; Kaur, N.; Farooq, U.; Khan, A. and Sngh, S., 2015. Efflux as an arising cause of drug resistance in Punjab-India. IJBPAS. Vol. 4, pp: 5967-5979.
  23. Ren, Q. and Paulsen, I.T., 2005. Comparative analyses of fundamental differences in membrane transport capabilities in prokaryotes and eukaryotes. PLoS Computational Biology. Vol. 1, 27 p.
  24. Rodrigues, P.M.D.A.; Neto, C.; Santos, L.R.D.C. and Knibel, M.F., 2009. Ventilator-associated pneumonia: epidemiology and impact on the clinical evolution of ICU patients. Jornal brasileiro de pneumologia. Vol. 35,
    pp: 1084-1091.
  25. Saderi, H.; Lotfalipour, H.; Owlia, P. and Salimi, H., 2010. Detection of metallo-β-lactamase producing Pseudomonas aeruginosa isolated from burn patients in Tehran, Iran. Laboratory Medicine. Vol. 41, pp: 609-612.
  26. Saier Jr, M.H. and Paulsen, I.T., 2001. Presented at the Seminars in cell & developmental biology.
  27. Sotto, A.; De Boever, C.M.; Fabbro-Peray, P.; Gouby, A.; Sirot, D. and Jourdan, J., 2001. Risk Factors for Antibiotic-ResistantEscherichia coli Isolated from Hospitalized Patients with Urinary Tract Infections: a Prospective Study. Journal of clinical microbiology. Vol. 39, pp:438-444.
  28. Tajbakhsh, E.; Ahmadi, P.; Abedpour-Dehkordi, E.; Arbab-Soleimani, N. and Khamesipour, F., 2016. Biofilm formation, antimicrobial susceptibility, serogroups and virulence genes of uropathogenic E. coli isolated from clinical samples in Iran. Antimicrobial Resistance and Infection Control. Vol. 5, 11 p.
  29. Tenover, F.C., 2006. Mechanisms of antimicrobial resistance in bacteria. The American journal of medicine. Vol. 119, pp:3-10.
  30. Van Bambeke, F.; Balzi, E. and Tulkens, P.M., 2000. Antibiotic efflux pumps. Biochemical pharmacology. Vol. 60, pp: 457-470.
  31. Viveiros, M.; Martins, A.; Paixão, L.; Rodrigues, L.; Martins, M.; Couto, I.; Fähnrich, E.; Kern, W.V. and Amaral, L., 2008. Demonstration of intrinsic efflux activity of Escherichia coli K-12 AG100 by an automated ethidium bromide method. International Journal of Antimicrobial Agents. Vol. 31, pp:458-462.
  32. Wang, H.; Dzink-Fox, J.L.; Chen, M. and Levy, S.B., 2001. Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role ofacrR mutations. Antimicrobial agents and chemotherapy. Vol. 45, pp: 1515-1521.