مناطق داغ زیستگاهی خانواده گربه سانان تحت اقلیم کنونی در ایران

نوع مقاله: تنوع زیستی

نویسندگان

1 گروه تنوع زیستی و مدیریت اکوسیستم‌ها، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، تهران، ایران

2 گروه علوم محیط زیست، انستیتو تکنولوژی فدرال زوریخ، دانشگاه زوریخ (ETH Zurich) ، سوئیس

چکیده

در دهه ­های اخیر مقدار قابل توجهی از پژوهش ­ها بر روی پیش­بینی پتانسیل­ های توزیع جغرافیایی گونه ­ها با هدف تعیین محدوده­ های داغ زیستگاهی متمرکز شده­ اند. با توجه به موقعیت خاص ایران و برخورداری از زیستگاه ­های متنوع و هم چنین محدودیت ­های موجود در کشور به نظر می ­رسد حفاظت از محدوده­ های داغ زیستگاهی موثرترین راه برای حفاظت از بسیاری از گونه ­ها درچشم ­اندازهای بزرگ باشد. هدف این مطالعه نشان دادن مناطق داغ زیستگاهی هشت گونه از خانواده گربه سانان ایران است که می‌­تواند نقشی کلیدی در حفاظت تنوع زیستی کشور داشته باشد. این پژوهش با استخراج 19 متغیر اقلیمی از پایگاه داده Worldclimو داده ­های حضور خانواده گربه­ سانان آغاز شد. مدل­ سازی توزیع گونه ­ای با استفاده از چهار مدل­ RF، SVM، MAXENT و BRT در نرم افزار R انجام شد. پس از روی هم گذاری نقشه ­های توزیع گونه ­­ها نقشه پیش ­بینی مناطق داغ زیستگاهی گربه­ سانان به تفکیک هر مدل تهیه شد. در نهایت برای ایجاد یک مدل با درجه اطمینان بالا، نقشه جامع مناطق داغ زیستگاهی با روش روی هم ­گذاری (ضرب لایه ­ها) برای گربه ­سانان ایران تهیه  شد. این پژوهش بخش مرکزی ایران، لکه ­هایی در شمال شرق ایران و بخش ­هایی از رشته ­کوه زاگرس را به عنوان مناطق داغ زیستگاهی برای گربه­سانان معرفی می­کند. روی هم گذاری نقشه پیش ­بینی مناطق داغ زیستگاهی گربه ­سانان با مناطق حفاظت شده نشان داد الگوی پتانسیل­ زیستگاهی گربه ­سانان هم پوشانی نسبتاً کمی با مناطق حفاظت شده دارد و مجموعاً با 39 منطقه تحت حفاظت هم پوشانی نسبی دارد. نتایج حاصل از اعتبارسنجی نشان داد در بین مدل ­های مورد استفاده، مدل RF قابلیت اعتماد در سطح بسیار عالی را دارد.

کلیدواژه‌ها


  1. سرهنگ زاده، ج.؛ یاوری، ا.ا. همامی، م.ر. جعفری، ح.ر. شمس اسفند آبادی، ب.، 1390. مدل سازی مطلوبیت زیستگاه گونه ­های حیات وحش در مناطق خشک (مطالعه موردی: کل و بز Capra aegagrus) در منطقه حفاظت شده­ی کوه بافق، نشریه علمی پژوهشی خشک بوم. دوره1، شماره 3، صفحه 38 تا 50.
  2. شیخی ئیلانلو، ص. و کریمی، س.، 1395. تعیین کانون های تمرکز با اولویت بالای حفاظتی برای پرندگان مطالعه موردی: شهرستان نقده، محیط زیست جانوری. دوره 8، شماره 3، صفحه 29 تا 38.
  3. کابلی، م.؛  علی آبادیان، م.  توحیدی فر، م. هاشمی،ع. موسوی، ب. و ، روزلار، ک.، 1395. اطلس پرندگان ایران، انتشارات جهاد دانشگاهی.  628 صفحه.
  4. کرمی، م.؛ قدیریان، ط. و فیض اللهی، ک.، 1395. اطلس پستانداران ایران، انتشارات سازمان حفاظت محیط زیست، 240 صفحه.
  5. Akhani, H., 1998. Plant biodiversity of Golestan National Park, Iran. No. 53,PP:1-411.Algar, A.C.; Kharouba, H.M.; Young, E.R.; and Kerr, J.T., 2009. Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography. Vol. 32, NO. 1, pp: 32: 22–33.
  6. Allouche, O.A.; Tsoar A. and R. Kadmon., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of applied ecology. Vol. 43, No. 6, pp: 1223-1232.
  7. Andelman, S.J.; and Willig. M.R., 2002. Alternative configurations of conservation reserves for Paraguayan bats: considerations of spatial scale. Conservation Biology. Vol. 16, No. 5, pp: 1352-1363.
  8. Austin, M.P., 1998. An ecological perspective on biodiversity investigations: examples from Australian eucalypt forests. Annals of the Missouri Botanical Garden. pp: 2-17.
  9. Benesty, J.; Chen, J.; Huang, Y. and Cohen, I., 2009. Noise reduction in speech processing. Springer Science and Business Media.  pp: 1-4.
  10. Breckle, S.W., 2002. Salinity, halophytes and salt affected natural ecosystems.  In Salinity: environment-plants-molecules. Springer, Dordrecht. pp: 53-77.
  11. Breiman, L., 2001. Random forests. Machine learning. Vol. 45, No. 1, pp: 5-32.
  12. Bui, D.T.; Tuan, T.A.; Klempe, H.; Pradhan, B.; and Revhaug, I., 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artifial neuralnet works, kernel logistic regression, and logistic model tree. Landslides. Vol. 13, pp: 361-378.
  13. Cabeza, M.; Araújo, M.B.; Wilson, R.J.; Thomas, C.D.; Cowley, M.J. and Moilanen, A., 2004. Combining probabilities of occurrence with spatial reserve design. Journal of applied ecology. Vol. 41, No. 2, pp: 252-262.
  14. Connell, J.H., 1978. Diversity in tropical rain forests and coral reefs - high diversity of trees and corals in maintained only in a non-equilibrium state. Science. Vol. 199, No. 4335, pp: 1302–1310.
  15. Cristianini, N. and Scholkopf, B., 2002. Support vector machines and kernel methods—the new generation of learning machines. Artificial Magazine. Vol. 23, No. 3, pp: 31–41.
  16. Cumming, G.S., 2000. Using habitat models to map diversity: pan-African species richness of ticks (Acari: Ixodida). Journal of Biogeography. Vol. 27, No. 2, pp: 425-440.
  17. Farashi, A. and Shariati, M., 2017. Biodiversity hotspots and conservation gaps in Iran. Journal for nature conservation. Vol. 39, pp: 37-57.
  18. Farhadinia, M.S.; Akbari, H.; Eslami, M. and Adibi, M. A., 2016. A review of ecology and conservation status of Asiatic cheetah in Iran. Cat News Special Issue Iran. Vol.10 . pp: 18-26.
  19. Farhadinia, M.S.; Moqanaki, E.M.; Hosseini-Zavarei, F. and Sharbafi, E., 2012. Baseline Information and Status Assessment of Manul (Pallas’s Cat; Otocolobus manul Pallas, 1776). Cat News Special Issue Iran. Vol.10, pp: 38-42.
  20. Fernández-Martínez, M.; Vicca, S.; Janssens, I.A.; Sardans, J.; Luyssaert, S.; Campioli, M. and Papale, D., 2014. Nutrient availability as the key regulator of global forest carbon balance. Nature Climate Change. Vol. 4, No. 6, pp: 471.
  21. Ferreira, R.L.C.; Silva, S.D.O.; da Silva, J.A. A.; Lira, M. D. A.; Alves, J. and Nascimento, L. M.,2016. Richness and diversity of Caatinga areas in different successional stages in northeastern Brazil. Scientia Forestalis. Vol. 44, No. 112, pp: 799-810.
  22. Ferrier, S., 2002. Mapping Spatial Pattern in Biodiversity Forregional Conservation planning: Where To From Here?. Systematic Biology. Vol. 51, pp:331–363.
  23. Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat. Vol. 29, pp: 1189 – 1232.
  24. Ghadirian, T.H.; Akbari. M.; Besmeli. A.; Ghoddousi. A.H.; Hamidi and M. Dehkordi., 2016. Sand cat in Iran - present sta­tus, distribution and conser­vation challenges.Cat News Special Issue Iran. Vol.10. pp: 56-59.
  25. Ghoddousi, A.; Hamidi. A. H.; Ghadirian. T. and Bani’Assadi, S., 2016. The status of wildcat in Iran-a crossroad of subspecies. Cat News Special Issue Iran. Vol.10.  pp: 60-63. ‏
  26. Gioia, P. and Pigott, J.P., 2000. Biodiversity assessment: a case study in predicting richness from the potential distributions of plant species in the forests of south-western Australia. Journal of Biogeography Vol. 27, pp: 1065–1078.
  27. Guisan, A. and Theurillat, J.P., 2000. Equilibrium modeling of alpine plant distribution: how far can we go? Phytocoenologia. Vol. 30, pp: 353–384.
  28. Guisan, A. and Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling. Vol. 135, pp: 147-186.
  29. Hijmans, R.J. and Shaffer, H. B., 2016. Amber N. Wright, Mark W. Schwartz. Climatic Change. Vol. 134, pp: 579-591.
  30. Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G. and Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International journal of climatology. Vol. 25, No.15, pp: 1965-1978.
  31. Joachims, T., 1998. Text categorization with support vector machines: Learning with many relevant features. European conference on machine learning. Antwerp. pp: 137-142.
  32. Ko, C.Y.; Schmitz, O.J.; BarbetMassin, M. and Jetz, W., 2014. Dietary guild composition and disaggregation of avian assemblages under climate change. Global change biology. Vol. 20, No. 3, pp: 790-802.
  33. Kumar, S. and Stohlgren, T.J., 2009. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and the Natural Environment. Vol. 1, No. 4, pp: 094-098.
  34. Lehmann, A.; Leathwick, J.R. and Overton, J.M., 2002. Assessing New Zealand fern diversity from spatial predictions of species assemblages. Biodiversity and Conservation. Vol. 11, pp: 2217–2238.
  35. Luoto, M.; Virkkala, R.; Heikkinen, R.K. and Rainio, K., 2004. Predicting bird species richness using remote sensing in boreal agricultural-forest mosaics. Ecological Applications. Vol. 14, pp: 1946–1962.
  36. Magness, D. R. Huettmann, F. and Morton, J. M. 2008. Using random forests to provide predicted species distribution maps as a metric for ecological inventory and monitoring programs. In Applications of computational intelligence in biology. pp: 209-229.
  37. Merow, C. Smith, M. J. and Silander, J. A. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography. Vol. 36, No.10, pp: 1058-1069.‏
  38. Momeni Dehaghi, I. Mahiny, A. S. Shabani, A. A. and Karami, M. 2013. Efficiency of current reserve network in Golestan Province (Iran) for the protection of hoofed ungulates. Biodiversity. Vol. 14, No. 3, pp: 162-168.
  39. Moser, D. Dullinger, S. Englisch, T. Niklfeld, H. Plutzar, C. Sauberer-Zechmeister, N.H.G. and Grabherr, G. 2005. Environmental determinants of vascular plant species richness in the Austrian Alps. Journal of Biogeography. Vol. 32, pp: 1117–1127.
  40. Mousavi, M.; Moqanaki, E.; Farhadinia, M.; Adibi, M.A.; Rabiee, K. and Khosravi, S., 2016. The largest lesser cat in Iran - current status of the Eurasian lynx. Cat News Special Issue Iran. Vol.10, pp: 33-37.
  41. Naghibi, S.A.; Pourghasemi, H.R. and Dixon, B., 2016. GIS based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. 
  42. Environ Monti Assess. Vol. 188, No. 44, pp: 1-27.
  43. Nogues-Bravo, D.; Araujo, M.B.; Romdal, T. and Rahbek, C., 2008. Scale effects and human impact on the elevational species richness gradients. Nature. Vol. 453, pp: 216–219.
  44. Ortega-Huerta, M.A. and Peterson, A. T., 2008. Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Revista mexicana de Biodiversidad. Vol. 79, No. 1, pp: 205-216.
  45. Parviainen, M.; Marmion, M.; Luoto, M.; Thuiller, W. and Heikkinen, R.K., 2009. Using summed individual species models and state-of-the-art modelling techniques to identify threatened plant species hotspots. Biological Conservation. 142: 2501–2509.
  46. Pearson, R. G., 2007. Species distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History. pp: 50.
  47. Phillips, S.J. and Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography.Vol. 31, No. 2, pp: 161-175.‏
  48. Phillips, S.J.; Anderson, R.P. and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling. Vol: 190, No. 3, pp: 231-259.
  49. Phillips, S.J.; Dudlk, M.; Schapire, R.E., 2004. A maximum entropy approach to species distribution modeling. Proceedings of the 21st International Conference on Machine Learning. Association for Computing Machinery. Vol. 30, pp: 655–662.
  50. Platts, P.J.; McClean, C. J.; Lovett, J.C. and Marchant, R., 2008. Predicting tree distributions in an East African biodiversity hotspot: model selection, data bias and envelope uncertainty. Ecological Modelling. Vol. 218, No. 2, pp: 121-134.
  51. Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C.; Mohammadi, M. and Moradi, H.R., 2013. Aplication of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arabian Journal of Geosciences. Vol. 6, pp: 2351–2365.
  52. Pulliam, H.R., 2000. On the relationship between niche and distribution. Ecology Letters. Vol. 3, pp: 349–361.
  53. Quintero, I. and Wiens, J.J., 2013. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecology letters. Vol. 16, No. 8, pp: 1095-1103.
  54. Rondinini, C.; Wilson, K. A.; Boitani, L.; Grantham, H. and Possingham, H. P., 2006. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecology letters. Vol.9, No.10, pp: 1136-1145.‏
  55. Sanei. A.; Mousavi, M.; Rabiee, K.; Khosravi, M.S.; Julaee, L.; Gudarzi, F.; Jaafari, B.; Chalani, M., 2016b. Distribution, characteris­tics and conservation of the jungle cat in Iran.Cat News Special Issue Iran. Vol. 10, pp: 51-55.
  56. Sanei.A.; Mousavi, M.;  Kiabi, B.; Masoud, M.R.; Gord Mardi, E.; Mohamadi, H.; Shakiba, M.;  Baran Zehi, A.; Teimouri, M. and Raeesi, T., 2016a. Status assessment of the Persian leopard in Iran. Cat News Special Issue Iran. Vol.10, pp: 43-50.
  57. Shataee, S.; Weinaker, H. and Babanejad, M., 2011. Plot- level Forest Volume Estimation Using Airborne Laser Scanner and TM Data, Comparison of Boosting and Random Forest Regression Algorithms. Procedia Environmental Sciences. Vol. 7, pp: 68-73.
  58. Shruthi, R.B.V.; Kerle, N.; Jetten, V. and Stein, A., 2014. Object- based gully system prediction from medium resolution imagery using Random Forests. Geomorphology. Vol. 216, pp: 283-294.
  59. Soberon, J., 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10: 1115–1123.
  60. Thuiller, W.; Midgley, G.F.; Rouget, M. and Cowling, R.M., 2006. Predicting patterns of plant species richness in megadiverse South Africa. Ecography. Vol. 29, pp: 733–744.
  61. Vapnik, V., 1995. The nature of statistical learning theory. Springer Science and Business Media.
  62. Wang, L. 2005. Support Vector Machines: Theory and Applications. Springer Science and Business Media. Vol. 177, pp: 226-441.
  63. Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon. Vol. 21, pp: 231–251.
  64. Xing, X.; Slabbekoorn, H.; Campbell, J.; Li, F. and Ma, J., 2017. Distinct song parts of the endemic marsh grassbird of China vary with latitude and climate among migratory and sedentary populations. Evolutionary Ecology. Vol. 31, No. 1, pp: 63-76.
  65. Yang, RM.; Zhang, G.L.; Liu, F.; Lu, Y.Y.; Yang, M.; Yang, F.; Zhao, Y.G. and Li, D.C., 2016. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators. Vol. 60, pp: 870-878.
  66. Yu, X.; Hyyppa, J.; Vastaranta, M.; Holopainen, M. and Viitala, R., 2011. Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS Journal of Photogrammetry and remote sensing. Vol. 66, No. 1, pp: 28-37.
  67. Zhao, H.; Sun, J. Xu, X. and Qin, X., 2017. Stoichiometry of soil microbial biomass carbon and microbial biomass nitrogen in China's temperate and alpine grasslands. European Journal of Soil Biology. Vol. 83, pp: 1-8.