تاثیر منابع مختلف کربن بر جمعیت باکتریایی و مشخصات بافت سنجی روده کپورمعمولی (Cyprinus carpio) درسیستم بیوفلاک

نوع مقاله : محیط زیست جانوری

نویسندگان

1 گروه شیلات، دانشکده منابع طبیعی دریا، دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر، ایران

2 گروه شیلات، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

در­این تحقیق، تاثیر منابع مختلف کربن (ملاس چغندر و پودر تفاله هویج) بر تعداد کل باکتری ­ها و تغییرات بافتی روده ماهی کپورمعمولی (Cyprinus carpio) در سیستم بیوفلاک مورد بررسی قرار گرفت. تعداد 243 قطعه ماهی با میانگین وزنی (8/1±16/2)گرم تهیه و با تراکم 9 عدد در هر آکواریوم50 لیتری به­ مدت 8 هفته تیمار شدند. در­مجموع 9 تیمار آزمایشی شامل تیمار1 (بدون سیستم بیوفلاک با 100% جیره روزانه) و 8 تیمار در سیستم بیوفلاک شامل تیمار 2 (100%)، تیمار 3 (75%)، تیمار 4 (50%) و تیمار 5 (25%) جیره روزانه + منبع کربنی پودر تفاله هویج و تیمار 6 (100%)، تیمار 7 (75%)، تیمار 8 (50%)، تیمار 9 (25%) جیره روزانه + منبع کربنی ملاس چغندر­قند مورد ارزیابی قرار گرفتند.در ­پایان آزمایش  جمعیت باکتریایی روده و محیط پرورشی و نیز مشخصات بافت­ سنجی بررسی شدند. نتایج به ­دست آمده نشان داد که تفاوت معنی ­داری (0/05>p) در تعداد باکتری­ های روده و هم­ چنین آب محیط پرورش بین تیمار­های بیوفلاک و تیمار شاهد وجود دارد به ­طوری که بیش ­ترین تعداد باکتری­ های روده در تیمار 5 (LogCFU/g 7/7±0/008) و کم ­ترین آن (LogCFU/g 6/08±0/018) در تیمار شاهد است و بیش­ ترین تعداد باکتری­ های محیط پرورش در تیمار 6(LogCFU/ml 6/18±0/023)و کم ­ترین در تیمار شاهد(LogCFU/ ml 4/18±0/03) به ­دست آمد. افزایش معنی ­دار (0/05>p) طول پرز­های روده در تیمار 3 مشاهده شد. استفاده از سیستم بیوفلاک و افزودن منبع کربنی سبب تغییر در جمعیت کل باکتری­ های آب محیط پرورش،روده و تغییراتی از ­جمله افزایش طول پرز، سلول­ هایجامی وسلول­ های لوکوسیت دربافت روده گردید.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of different carbon sources on bacterial count and histometric of Cyprinus carpio intestine, reared in a biofloc system

نویسندگان [English]

  • Saeed Asadollah Nasrabadi 1
  • Preeta Kochanian 1
  • Nasorllah Mahboobi Soofiani 2
  • Vahid Yavari 1
  • Amir Hossein Jallali 2
1 Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
2 Department of Fisheries, Faculty of Natural Resources, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

In this study, effect of different carbon sources (carrot pomace and molasses) on total bacterial count and histology of intestine in Cyprinus carpio, reared in a biofloc system was investigated. 243 fish (16.8±2.1g BW) were purchased and randomly distributed in 50-liter aquarium (9/aquarium) for 8­weeks. Nine different treatments, including a treatment with 100 % daily feeding rate (3%­BW) with water exchange as a control, the other 8­treatments were assigned to biofloc systems, including treatment 2­(100%), 3­(75%), 4­(50%) and 5­(25%) daily feeding rate in addition to carbon source carrot pomace and 4 other treatments, including treatment 6­(100 %), 7­(75%), 8­(50%) and 9­(25%) daily feeding rate in addition to carbon source molasses. At the end of experiment, total number of bacteria in the aquaria water and intestine of each fish was counted. Additionally, intestine histology was investigated using H&E. The results showed that there are significant differences in bactria counts of intestine and water between biofloc treatments and control. The highest number of intestinal bacteria (7.7±0.008 logCFU/g) was related to treatment­5 and the least of that was observed in control (6.08±0.018 logCFU/g). The highest number of bacteria in water media (6.18±0.023 logCFU /ml) was obtained in treatment6 and the least of that was related to the control (4.18±0.03 logCFU/ml). Significant (p<0.05) increase in villi length was observed in treatment­3. The biofloc system and the addition of carbon source caused changes in bacterial count of intestine and water culture media besides alterations in villi length, club shaped cells and leukocytes of carp intestinal.

کلیدواژه‌ها [English]

  • Intestinal histometry
  • Bacterial count
  • Cyprinus carpio
  • Biofloc technology
  1. Abid, A.; Davies, S.J.; Wines, P.; Emery, M.; Castex, M.; Gioacchini, G.; Carnevali, O.; Bickerdike, R.; Romero, J. and Merrifield, D.L., 2013. Dietary symbiotic application modulates Atlantic salmon (Salmon salar) intestinal microbial communities and intestinal immunity. Fish Shellfish Immunol. Vol. 22, pp: 1-9.
  2. Aguilera-Rivera, D.; Prieto-Davó, A.; Escalante, K.; Chávez, C.; Cuzon, G. and Gaxiola, G., 2014. Probiotic effect of FLOC on Vibrios in the pacific white shrimp Litopenaeus vannamei. Aquaculture. Vol. 424, pp: 215-219.
  3. AL Abdulhadi, H.A., 2005. Some comparative histological studies on alimentary tract of Tilapia fish (TilaplaspilurusI) and Sea Bream (Myliocuvieri). Egypt J Aquat Res. Vol. 31, No. 1, pp: 387-396.
  4. Anand, P.S.S.; Kohli, M.P.S.; Kumar, S.; Sundaray, J.K.; Roy, S.D.; Venkateshwarlu, G.; Sinha, A, and Pailan, G.H., 2014. Effect of dietary, supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture. Vol. 418, pp: 108-115.
  5. Anand, P.S.S.; Kumar, S.; Panigrahi, A.; Ghoshal, T.K.; Dayal, J.S.; Biswas, G.; Sundaray, J.K.; De, D.; Raja, R.A. and Deo, A.D., 2013. Effects of C: N ratio and substrate integration on periphyton biomass, microbial dynamics and growth of Penaeus monodon juveniles. Aquaculture International. Vol. 21, No. 2, pp: 511-524.
  6. AOAC (Association of Official Analytical Chemists). 1990. Official Methods of Analysis AOAC, Washington, DC. 1963 P.
  7. Asaduzzaman, M.; Wahab, M.A.; Verdegem, M.C.J.; Huque, S.; Salam, M.A. and Azim, M.E., 2008. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture. Vol. 280, pp: 117-123.
  8. Avnimelech, Y., 1999. Carbon/nitrogen ratio as a control element in aquaculture. Systems. Aquaculture. Vol. 176, pp: 227-235.
  9. Avnimelech, Y., 2009. Biofloc Technology , A Practical Guide Book.The World Aquaculture Society, Baton Rouge, Louisiana, United States. 182 P.
  10. Azim, M.E. and Little, D.C., 2008. The biofloc technology (BFT) in indoor tanks: water quality biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture. Vol. 283, No. 1, pp: 29-35.
  11. Briones, A. and Raskin, L., 2003. Diversity and dynamics of microbial communities in engineering environments and their implications for process stability. Curr Opin Biotechnol. Vol. 14, pp: 270-276.
  12. Burford, M.A.; Thompson, P.J.; McIntosh, R.P.; Bauman, R.H. and Pearson, D.C., 2004. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high intensity, zero exchange system. Aquaculture. Vol. 232, pp: 525-537.
  13. Crab, R.; Defoirdt, T.; Bossier, P. and Verstraete, W., 2012. Biofloc technology inaquaculture: beneficial effects and future challenges. Aquaculture. pp: 356-357.
  14. Crab, R.; Avnimelech, Y.; Defoirdt, T.; Bossier, P. and Verstraete, W., 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture. Vol. 270, pp: 1-14.
  15. Crab, R.; Chielens, B.; Wille, M.; Bossier, P. and Verstraete, W., 2010a. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquacult Res.
    Vol. 41, pp: 559-567.
  16. Crab, R.; Kochva, M.; Verstraete, W. and Avnimelech, Y., 2009. Bio flocs technology applicationin over-wintering of tilapia. Aquacult. Eng. Vol. 40, pp: 105-112.
  17. Crab, R.; Lambert, A.; Defoirdt, T.; Bossier, P. and Verstraete, W., 2010b. The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. J Appl Microbiol. Vol. 109, No. 5, pp:1643-1649.
  18. Del'Duca, A.; Cesar, D.E. and Abreu, P.C., 2015. Bacterial community of pond's water, sediment and in the guts of tilapia (Oreochromis niloticus) juveniles characterized by fluorescent in situ hybridization technique. Aquac. Res. Vol. 46, No. 3, pp: 707-715.
  19. De Schryver, P. and Verstraete, W., 2009. Nitrogen removal fromaquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors. Bioresour Technol. Vol. 100, No. 3, pp: 1162-1167.
  20. De Schryver, P. and Vadstein, O., 2014. Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J. pp: 1-9.
  21. Ebeling, J.M.; Timmons, M.B. and Bisogni, J.J., 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture. Vol. 257, pp: 346-358.
  22. Ellis, A.E., 2001. Innate host defense mechanisms of fish against viruses and bacteria. Dev. Comp. Immunol. Vol. 25, pp: 827-839.
  23. Ferreira, G.S.; Bolívar, N.C.; Pereira, S.A.; Guertler, C.; Vieira, F.d.N.; Mouriño, J.L.P. and Seiffert, W.Q., 2015. Microbial biofloc as source of probiotic bacteria for the culture of Litopenaeus vannamei. Aquaculture. Vol. 448, pp: 273-279.
  24. FAO (Food and Agriculture Organization of the United Nations). 2016. The State of World Fisheries and Aquaculture, Contributing to food security and nutrition for all. Room. Available at http://www.fao.org. 191 p.
  25. Gisber, E.; Castillo, M.; Skalli, A.; Andree, K.B. and Badiola, I., 2013. Bacillus cereus var. toyoi promotes growth, affects the histological organization and microbiota of the intestinal mucosa in rainbow trout fingerlings. J Animal Sci. Vol. 91, No. 27, pp: 66-74.
  26. Goldburg, R.; Elliot, M. and Naylor, R.L., 2001. Marine Aquaculture in the United States. Environmental Impacts and Policy Options; Pew Oceans Commission: Arlington, VA.
  27. Hargreaves, J.A., 2013. Biofloc Production Systems for Aquaculture. 4503. SRAC Publication. pp: 1-12.
  28. Hargreaves, J.A., 2006. Photosynthetic suspended-growth systems in aquaculture. Aquacult. Eng. Vol. 34, pp: 344-363.
  29. Hapsari, F., 2016. The effect of fermented and non fermented biofloc inoculated with bacterium Bacillus cereus for catfish (Clarias gariepinus) juveniles. AACL Bioflux. Vol. 9, No. 2, pp: 334-339.
  30. Hari, B.; Kurup, B.M.; Varghese, J.T.; Schrama, J.W. and Verdegem, M.C.J., 2004. Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture. Vol. 241, pp: 179-194.
  31. Hari, B.; MadhusoodanaKurup, B.; Varghese, J.T.; Schrama, J.W. and Verdegem, M.C.J., 2006. The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems. Aquaculture. Vol. 252, pp: 248-263.
  32. Hpstins, B.; Lara, G.; Decamp, O.; Cersar, E.D. and Jr, W.W., 2017. Efficacy and variations in bacterial ensity in the gut of Litopenaeus vannamei reared in a BFT system and in clear water supplemented with a ommercial probiotic mixture. Aquaculture. Vol. 480, pp: 58-64.
  33. Hollender, J.; van der Krol, D.; Kornberger, L.; Gierden E. and Dott, W., 2002. Effect of different carbon sources on the enhanced biological phosphorus removal in a sequencing batch reactor. World J. Microbiol. Biotechnol. Vol.18, pp: 355-360.
  34. Hu, X.; Cao, Y.; Wen, G.; Zhang, X.; Xu, Y.; Xu, W.; Xu, Y. and Li, Z., 2016. Effect of combined use of Bacillus and molasses on microbial communities in shrimp cultural enclosure systems. doi:10.1111/are.13101
  35. Jordanoska, L.V. and Kostoski, G., 2006. Histopathological Analysis of liver in fish in Reservoir Trebenista Natura Croatica. Vol. 14, No. 2, pp: 147-153.
  36. Ju, Z.Y.; Forster, I.; Conquest, L.; Dominy, W.; Kuo, W.C. and Horgen, F.D., 2008. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles Aquacult Res. Vol. 39, pp: 118-133.
  37. Kamilya, D.; Debbarma, M.; Pal, P.; Kheti, B.; Sarkar, S. and Singh, S.T., 2017. Biofloc technology application in indoor culture of Labeo rohita (Hamilton, 1822) fingerlings: The effects on inorganic nitrogen control, growth and immunity. Chimospher. pp: 8-14.
  38. Karim, G., 2003. Microbial tests in Foods. Univ. of Tehran. 4 th edit. 517 p.
  39. Mahanand, S.S.; Moulick, S. and Srinivasa, R., 2013. Water quality of Rohu, Labeorohita, in a biofloc system. J. Appl. Aquacult. Vol. 25, pp: 121-131.
  40. Merrifield, D.L.; Harper, G.M.; Dimitroglou, A.; Ringø, E. and Davies, S.J., 2010. Possible influence of probiotic adhesion to intestinal mucosa on the activity and morphology of rainbow trout (Oncorhynchus mykiss) enterocytes. Aquac Res. Vol. 46, No. 126, pp: 68-72.
  41. Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H. and Troell, M., 2000. Effect of aquaculture on world fishsupplies. Nature. Vol. 405, pp: 1017-1024.
  42. Noga, E.J., 1995. Fish Diseases: Diagnosis and Treatment. Mosby Electronic and Walsworth publishing Co. pp: 94-199.
  43. Oehmen, A.; Yuan, Z.; Blackall, L.L. and Keller, J., 2004. Short-term effects of carbon source on the competition of polyphosphate accumulating organisms and glycogen accumulating organisms. Water Science and Technology. Vol. 50, pp: 139-144.
  44. Piedrahita, R.H., 2003. Reducing the potential environmental impact of tank aquacul-ture effluents through intensification and recirculation. Aquaculture. Vol. 226, pp: 35-44.
  45. Picchietti, S.; Mazzini, M.; Taddei, A.R.; Renna, R., Fausto, A.M.; Mulero, V.; Carnevali, O.; Cresci, A. and Abelli, L., 2007. Effects of administration of probiotic strains on GALT of larval gilthead seabream: immunohistochemical and ultrastructural studies. Fish Shell fish Immunol. Vol. 22, pp: 57-67.
  46. Picchietti, S.; Fausto, A.M.; Randelli, E.; Carnevali, O.; Taddei, A.R.; Buonocore, F.; Scapigliati, G. and Abelli, L.,2009. Early treatment with Lactobacillus delbrueckii strain induces an increase in intestinal T-cells and granulocytes and modulates immune-related genes of larval Dicentrarchus labrax (L.). Fish Shellfish Immunol.
    Vol. 26, pp: 368-76.
  47. Qin, Y.; Hou, J.; Deng, M.; Liu, Q.S.; Wu, C.W.; Ji, Y.J. and He, X.G., 2016. Bacterial abundance anddiversity in pond water supplied with different feeds. Scientific Reports. Vol. 6, 35232 p.
  48. Racz, L.A.; Datta, T. and Goel, R., 2010. Effect of organic carbon on ammonia oxidizing bacteria in a mixed culture. Bioresource Technol. Vol. 101, pp: 6454-6460.
  49. Ringo, E. and Strom, E., 1994. Intestinal microflora of Arcticcharr.Salvelinusalpinus) (L.I.). The gastrointestinal microflora of free-living fish, and theeffect of diet and salinity on Intestinal microflora. Aquacult. Fish. Manage. Vol. 25, pp: 623-629.
  50. Saritha, T., 2009. Development of innovative low cost larvi culture technologies of the giant freshwater prawn, Macrobrachium rosenbergii (de Man). PhD. Thesis, Cochin University of Science and Technology, India.
  51. Standen, B.T.; Rawling, M.D.; Davies, S.J.; Castex, M. F.; Oey, A.; Gioacchini, G.; Carnevali, O. and Merrifield, D.L.,2013. Probiotic Pediococcus cidilactici modulates both localised intestinal- and peripheral- immunity in tilapia (Oreochromis niloticus). Fish Shellfish Immun. Vol. 35, pp: 1097-1104.
  52. Tapia-Paniagua, S.; Lobo, C.; Moreno-Ventas, X.; Banda, I.G.D.L.; Moriñigo, M.A. and Varghese, J.T., 2007. Carbon/nitrogen ratio optimization and periphyton development on the production and sustainability of Penaeusmonodon (fabricius) in extensive culture system. PhD thesis, Cochin University of Science and Technology, Cochin, India.
  53. Vander Oost, R.; Beyer, J. and Vermeulen, N., 2007. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. Vol. 68, pp: 603-621.
  54. Wei, Y.F.; Liao, S.A. and Wang, A.L., 2016. The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture. Vol. 465, pp: 88-93.
  55. Yang, S.P. and Qiu, D.Q., 2006. Water quality in the high density shrimp culturing ponds. Fisheries Science. Vol. 25, No. 9, pp: 459-462.
  56. Zhao, Z.G.; Xu, Q.Y.; Luo, L.; Yin, J.S. and Wang, C.A., 2013. Effect ofadding carbon source on growth of fish and water quality inSongpu mirror carp (Cyprinus specularis Songpu) pond.J. Northeast Agric. Univ. Vol. 44, pp: 105-112 (in Chinese withEnglish abstract).