ارزیابی تغییرات بیان ژن کاتاپسین L و فاکتورهای رشد در میگوی سفید غربی (Litopenaeus vannamei) تحت تاثیر بایوفلاک های متفاوت

نوع مقاله: ژنتیک

نویسندگان

1 گروه شیلات، دانشکده منابع طبیعی دریا، دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر، ایران

2 گروه شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه خلیج فارس، بوشهر، ایران

3 پژوهشکده خلیج فارس، دانشگاه خلیج فارس، بوشهر، ایران

چکیده

کاتاپسین­ ها جزء اصلی سیستم پروتئولیتیک لیزوزومی و مسئول تجزیه پروتئین­ های داخل سلولی هستند. هدف این تحقیق ارزیابی تغییرات میزان بیان ژن کاتاپسین ال (CTSL) و فاکتورهای رشد در میگوی سفید غربی (Litopenaeus vannamei) تحت تاثیر بایوفلاک ­های متفاوت با استفاده از سطوح مختلف پروتئینی بود. چهار تیمار بایوفلاک مشتمل بر بایوفلاک خرما +جیره با پروتئین 25% (P25)، بایوفلاک ملاس+جیره با پروتئین 25% (M25)، بایوفلاک خرما+جیره با پروتئین 15% (P15) و بایوفلاک ملاس+جیره با پروتئین 15% (M15) و یک تیمار شاهد بدون بایوفلاک (38% پروتئین) با 3 تکرار بود. در یک دوره 35 روزه 35 قطعه میگوی جوان (0/33±5/37 گرم) به ­طور تصادفی در 15 مخزن 300 لیتری (تراکم 175 قطعه در متر مکعب) ذخیره ­سازی گردید. به ­منظور برآورد تاثیر بایوفلاک بر میزان بیان ژن کاتاپسین ((CTSL  در هپاتوپانکراس میگو از تکنیک Real time PCR و از ژن Beta actin به ­عنوان ژن کنترل داخلی استفاده شد. در تمام تیمارهای بایوفلاک نسبت به شاهد افزایش معنی ­داری در میزان بیان ژن CTSL مشاهده گردید (0/05>P)، هرچندکه تیمار 25P بالاترین میزان بیان را نشان داد (0/05>P). هم­ چنین بالاترین میزان پارامترهای رشد (وزن به­ دست آمده، ضریب تبدیل غذایی مطلوب، نرخ رشد و بازماندگی) در میگوهای تیمار P25 و کم­ترین آن ها در تیمار شاهد دیده شد (0/05>P). نتایج نشان داد میزان بیان ژن CTSL با تغییر منابع کربنی یا میزان پروتئین جیره در بین تیمارهای بایوفلاک، اختلاف معنی ­داری با یکدیگر نداشتند (0/05<P). به ­نظر می ­رسد فناوری بایوفلاک با اثرات مثبت خود بر گوارش و ایمنی، سبب افزایش بیان ژن CTSL در این گونه شده است.

کلیدواژه‌ها


  1. عباس ­زاده، ا.؛ یاوری، و.؛ حسینی، ج. و نفیسی، م.، 1396. تاثیر منابع مختلف کربنی (ملاس و شیره ضایعات خرما) بر کیفیت آب، عملکرد رشد و ترکیبات بدن میگوی سفید غربی (Litopenaeus vannamei) در سیستم بایوفلاک. مجله بوم­ شناسی آبزیان. دوره 6، شماره 4، صفحات 21 تا 38.
  2. عظیمی، ع.؛ جعفریان، ح.؛ هرسیج، م.؛ قلی ­پور، ح. و پاتیمار، ر. 1395. تاثیر نسبت­ های مختلف کربن به نیتروژن بر پارامترهای آب و عملکرد رشد بچه ماهیان کپور معمولی در سیستم بیوفلاک. نشریه توسعه آبزی ­پروری. دوره 4، شماره 4، صفحات 75 تا 89.
  3. Al Farsi, M.A. and Lee, C.Y., 2008. Nutritional and functional properties of dates: a review. Critical Reviews in Food Science and Nutrition. Vol. 48, pp: 877-887.
  4. Allaith, A., 2008. Antioxidant activity of Bahraini date palm (Phoenix dactylifera L.) fruit of various cultivars. International Journal of Food Science and Technology. Vol. 43, pp: 1033-1040.
  5. Anand, P.S.S.; Kohli, M.P.S.; Kumar, S.; Sundaray, J.K.; Roy, S.D.; Venkateshwarlu, G.; Sinha, A. and Pailan, G.H., 2014. Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture. Vol. 418-419, pp: 108-115.
  6. Aoki, H.; Ahsan, M.N. and Watabe, S., 2003. Molecular cloning and characterization of cathepsin B from the hepatopancreas of northern shrimp Pandalus borealis. Comparative Biochemistry and Physiology Part B. Vol. 134, pp: 681-694.
  7. Avnimelech, Y., 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture. Vol. 176, pp: 227-235.
  8. Ballester, E.L.C.; Abreu, P.C.; Cavalli, R.O.; Emerenciano, M.; Abreu, L. andWasielesky, W.Jr., 2010. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition. Vol. 16, pp: 163-172.
  9. Biglari, F.; AlKarkhi, A.F.M. and Azhar, M.E., 2008. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chemistry. Vol. 107, No. 4, pp: 1636-1641.
  10. Boudries, H.; Kefalas, P. and Me´ndez, O., 2007. Carotenoid composition of Algerian date varieties (Phoenix dactylifera) at different edible maturation stages. Food Chemistry. Vol. 101, pp: 1372-1377.
  11. Cesar, J.R.O. and Yang, J. 2007. Expression Patterns of Ubiquitin, Heat Shock Protein 70, a-Actin and b-Actin Over the Molt Cycle in the Abdominal Muscle of Marine Shrimp Litopenaeus vannamei. Molecular reproduction and development. Vol. 74, pp: 554-559.
  12. Correiaa, E.; Wilkenfeld, J.; Morris, T.; Weic, L.; Prangnell, D. and Samocha, T., 2014. Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquacultural Engineering. Vol. 59, pp: 48-54.
  13. Crab, R.; Defoirdt, T.; Bossier, P. and Verstraete, W., 2012. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture. Vol. 356-357, pp: 351-356.
  14. Doughty, M.J. and Gruenstein, E.I., 1987. Cell growth and substrate effects on characteristics of a lysosomal enzyme (cathepsin C) in Duchenne muscular dystrophy fibroblasts. Biochemistry and Cell Biology. Vol. 65, No. 7, pp: 617-625.
  15. Ekasari, J.; Angela, D.; HadiWaluyo, S.; Bachtiar, T.; Surawidjaja, E.H.; Bossier, P. and De Schryver, P., 2014. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture  animals. Aquaculture. Vol. 426, PP: 105-111.
  16. FAO. 2016. The state of the world fisheries and aquaculture. FAO Fisheries Department, Food and Agriculture Organization of the United Nations, publishing Management Service, Rome, Italy. http://www.fao.org.
  17. Gao, L.; Shan, H.W.; Zhang, T.W.; Bao, W.Z. and Ma, S.J., 2012. Effects of carbohydrate addition on Litopenaeus vannamei intensive culture in a zero-water exchange system. Aquaculture. Vol. 342, pp: 89-96.
  18. Glenn, K.; Grapes, L.; Suwanasopee, T.; Harris, D.; Li, Y.; Wilson, K. and Rothschild, M., 2005. SNP analysis of AMY2 and CTSL genes in Litopenaeus vannamei and Penaeus monodon shrimp. International Society for Animal Genetics. Vol. 36, pp: 235-236.
  19. Grath, M., 1999. The lysosomal cysteine proteinases. Annual Review of Biophysics and Biomolecular Structure. Vol. 28, pp: 181-204.
  20. Hu, K. and Leung, P., 2007. Food digestion by cathepsin L and digestion-related rapid cell differentiation in shrimp hepatopancreas. Comparative Biochemistry and Physiology. Vol. 146, pp: 69-80.
  21. Hu, K.J. and Leung, P.C., 2006. Complete, precise, and innocuous loss of multiple introns in the currently intronless, active cathepsin L-like genes, and inference from this event.  Molecular Phylogenetics and Evolution. Vol. 38, pp: 685-696.
  22. Jatoba, A.; Corrêa da Silva, B.; Souza da Silva, J.; Nascimento Vieira, F.; Pedreira Mouriño, J.; Quadros Seiffert, W. and Massucci Toledo, T., 2014. Protein levels for Litopenaeus vannamei in semi-intensive and biofloc systems. Aquaculture. Vol. 432, pp: 365-371.
  23. Jung, H.; Lyons, R.; Hurwood, D.  and Mather, P., 2013. Genes and growth performance in crustacean species:a review of relevant genomic studies in crustaceans and other taxa. Reviews in Aquaculture. Vol. 5, pp: 77-110.
  24. Khanjani, M.H.; Sajjadi, M.M.; Alizadeh, M. and Sourinejad, I., 2017. Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research. Vol. 47, pp: 1491-1501.
  25. Krummenauer, D.; Samocha, T.; Poersch, L.; Lara, G. and Wasielesky, W.Jr., 2014. The reuse of water on the culture of Pacific white shrimp, Litopenaeus vannamei, in BFT system. Journal of the World Aquaculture Society. Vol. 45, No. 1, pp: 3-14.
  26. Le Boulay, C.; Wormhoudt, A. and Sellos, D., 1996. Cloning and expression of cathepsin L-like proteinases in the hepatopancreas of the shrimp Penaeus vannamei during the intermolt cycle. Journal of comparative physiol part B. Vol. 166, pp: 310-318.
  27. Liu, L.; Hu, Z.; Dai, X. and Avnimelech, Y., 2014. Effects of addition of maize starch on the yield, water quality and formation of bioflocs in an integrated shrimp culture system. Aquaculture. Vol. 418-419, pp: 79-86.
  28. Najdegerami, E.; Bakhshi, F. and Bagherzadeh Lakani, F., 2015. Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero -water exchange system. Fish Physiology and Biochemistry. Vol. 42, No. 2, pp: 457-465.
  29. Polia, M.; Schveitzer, R. and Pires de Oliveira, A., 2015. The use of biofloc technology in a South American catfish (Rhamdia quelen) hatchery: Effect of suspended solids in the performance oflarvae. Aquacultural Engineering. Vol. 66, pp: 17-21.
  30. Qian, Z.; He, S.; Liu, T.; Liu, L.; Hou, F.; Liu, Q.; Wang, X.; Mi, X.; Wang, p. and Liu, X., 2014. Identification of ecdysteroid signaling late-response genes from different tissues of the Pacific white shrimp, Litopenaeus vannamei. Comparative Biochemistry and Physiology Part A. Vol. 172, pp: 10-30.
  31. Rania, M.A.; Aisha, S.M.; Mohamed, M.E. and Isam, A.M., 2014. Chemical composition, antioxidant capacity, and mineral extractability of Sudanese date palm (Phoenix dactylifera L.) fruits. Food Science & Nutrition. Vol. 5, pp: 478-489.
  32. Rasmussen, R., 2001. Quantification on the Light Cycler. In: Meuer, S., Witter, C., Nakagawa, K. (Eds.), Rapid Cycler Real-time PCR, Methods and Applications. Spinger Press, Heidelberg, pp: 21-34.
  33. Ray, A.J. and Lotz, J.M., 2014. Comparing a chemoautotrophic-based biofloc system and three heterotrophic based systems receiving different carbohydrate sources. Aquacultural Engineering. Vol. 63, pp: 54-61.
  34. Robalino, J.; Almeida, J.S.; McKillen, D.; Colglazier, J.; Trent, H.F.; Chen, Y.A.; Peck, M.E.T.; Browdy, C.L.; Chapman, R.W.; Warr, G.W. and Gross, P.S., 2007. Insights into the immune transcriptome of the shrimp Litopenaeus vannamei: tissue-specific expression profiles and transcriptomic responses to immune challenge. Physiological Genomics. Vol. 29, pp: 44-56.
  35. Samocha, T.M.; Patnaik, S.; Speed, M.; Ali, A.M.; Burger, J.M.; Almeida, R.V.; Ayub, Z.; Harisanto, M.; Horowitz, A. and Brock, D.L., 2007. Use of molasses as carbon source in limited discharge nursery and grow out systems for Litopenaeus vannamei. Aquacultural Engineering. Vol. 36, pp: 184-191.
  36. Schveitzer, R.; Arantes, R.; Costódio, P.F.S.; Santo, C.M.D.E.; Arana, L.V.; Seiffert, W.Q. and Andreatta, E.R., 2013. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering. Vol. 56, pp: 59-70.
  37. Standard methods for the examination of water and waste water. 2005. American Public Health Association, American Water Works Association, Water Environment Federation.
  38. Turk, B.; Turk, D. and Turk, V., 2000. Lysosomal cysteine protease: more than scavengers. Biochimica et Biophysica Acta. Vol. 1477, pp: 98-111.
  39. Xu, W.J. and Pan, L.Q., 2012. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture. Vol. 356, pp: 147-152.
  40. Xu, W.J. and Pan, L.Q., 2013. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture. Vol. 412-413, pp: 117-124.
  41. Zhang, J.; Liu, Y.J.; Tian, L.X.; Yang, H.J.; Ling, G.Y.; Yue, Y.R. and Xu, D.H., 2013. Effects of dietry astaxanthin on growth, antioxidant capacity and gene expression in Pacific white shrimp Litopenaeus vannamei. Nutrition laboratory, Institute of Aquatic Economical Animals, School of Life Science, Sun Yat-sen University, Guangzhou, China.
  42. Zhao, Q.; Pan, L.; Ren, Q. and Hu, D., 2015. Digital gene expression analysis in hemocytes of the white shrimp Litopenaeus vannamei in response to low salinity stress. Fish & Shellfish Immunology. Vol. 42, pp: 400-407.
  43. Zokaeifar, H.; Luis Balcázar, J.; Roos Saad, C.; Salleh Kamarudin, M.; Sijam, K.; Arshad, A. and Nejat, N., 2012. Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunology. Vol. 33, pp: 683-689.