تاثیر غلظت های تحت کشنده دیازینون بر بیان ژن ویتلوژنین در جنس ماده ماهی گورخری (Danio rerio)

نوع مقاله : علوم جانوری

نویسندگان

گروه شیلات، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

در این تحقیق تأثیر دوزهای مختلف سم دیازینون بر بیان ژن‌ یتلوژنین (Vtg) درجنس ماده ماهی گورخری (Danio rerio) بررسی شد. تعداد 600 قطعه بچه‌ ماهی‌ گورخری با میانگین وزنی 0/01±0/15 ‌گرم در 4 تیمار و 3 تکرار به ­مدت یک ماه تحت تاثیر سه دوز سم 0/8، 1/6 و 3/2 میلی­ گرم بر لیتر و تیمار شاهد قرار گرفتند. در انتهای دوره جهت مطالعات ژنتیکی از کبد نمونه‌ برداری و استخراج RNA انجام شد. برای سنتز cDNA از کیت Superscript RTase استفاده ‌شد و cDNA حاصله با استفاده از پرایمرهای ژن‌های مذکور و ژن بتا اکتین به‌ عنوان ژن رفرنس در Real Time PCR استفاده شد. ارزیابی بیان ژن ویتلوژنین کاهش بیان را در گروه ­های تیمار شده با سم دیازینون نسبت به گروه شاهد نشان داد. در گروه­ های تیمار شده با سم دیازینون (0/8، 1/6 و 3/2 میلی­ گرم بر لیتر) میزان بیان ژن ویتلوژنین به ­ترتیب 0/9، 0/69 و 0/39 برابر گروه شاهد بود که الگوی کاهشی وابسته به دوزی را نشان می دهد (0/05>P). نتایج مطالعه حاضر نشان می ­دهد که سم دیازینون می­ تواند اثر منفی بر رشد و تکامل سلول­ های جنسی در جنس ماده ماهی زبرا داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of sublethal doses of diazinon on on the expression of vitellogenin (Vtg) gene in females Zebrafish (Danio rerio)

نویسندگان [English]

  • Masumeh Darvishi
  • Roughieh Safari
  • Ali Shabany
  • Hosein Hoseinifar
Department of Fisheries, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

The present study investigates, the effects of different doses of diazinon on the expression of vitellogenin (Vtg) gene in females Zebrafish (Danio rerio). For this purpose, 600 Zebrafish with average weight of 0.15+ 0.01 gr in 4 treatments and 3 replicates for one month were exposed to three doses of 0.8, 0.1 and 3.2 mg /ll of diazinon, and a control group for 30 days. At the end of fexpriment,RNA extracted from liver and brain, cDNA syntesised with Superscript RTase kit and PCR were done using primers relate to Vtg and  Beta-actin as housekeeping gene. The evaluation of the expression of the vitellogenin gene showed significant reduction in diazinon-treated groups compared to the control. In the diazinon-treated groups (0.8, 1.6 and 3.2 mg / L), the expression of the vitellogenin gene was 0.9, 0.96 and 0.39 fold of control, respectively, which showed dose-dependent reduction pattern (P≤0.05). The results of this study indicate that diazinone can have a negative effect on the growth and development of sexual cells in zebra fish.

کلیدواژه‌ها [English]

  • Diazinon
  • Vitellogenin
  • Gene expression
  • Zebrafish
  1. جمشیدی، ش.؛ کلباسی، م.ر.؛ صادقی ­زاده، م. و یزدانی ساداتی، م.ع.، ۱۳۹۲. تاثیر نونیل فنل بر تغییرات بیان ژن­ های ویتلوژنین و زوناپلوسیدا ۳.۱ در بافت ­های کبد، طحال، آبشش و عضله تاس ­ماهی ایرانی (Acipenser persicus). علوم و فنون شیلات. دوره ۲، شماره ۲، صفحات 1 تا 10.
  2. Ankley, G.T.; Miller, D.H.; Jensen, K.M.; Villeneuve, D.L. and Martinovic, D., 2008. Relationship of plasma sex steroid concentrations in female fathead minnows to reproductive success and population status. Aquatic toxicology. Vol. 88, No. 1, pp: 69-74.
  3. Arnold, H.: Pluta H.J. and Braunbeck, T., 1996. Sublethal Effects of Prolonged Exposure to Disulfoton in Rainbow Trout (Oncorhynchus mykiss): Cytological Alterations in the Liver by a Potent Acetylcholine Esterase Inhibitor. Ecotoxicology and Environmental Safety. Vol. 34, No. 1, pp: 43-55.
  4. Bowman, C.J.; Kroll, K.J.; Gross, T.G. and Denslow, N.D., 2002. Estradiol-induced geneexpression in largemouth bass (Micropterus salmoides). Mol. Cell. Endocrinol. Vol. 196, pp: 1-2.
  5. Chang, J.; Liu, S.; Zhou, S.; Wang, M. and Zhu, G., 2013. Effects of butachlor on reproduction and hormone levels in adult zebrafish (Danio rerio). Experimental and toxicologic pathology. Vol. 65, No. 1, pp: 1-2. 
  6. Chen, M.; Zhang, J.; Pang, S.; Wang, C.; Wang, L.; Sun, Y. and Liang, Y., 2018. Evaluating estrogenic and anti-estrogenic effect of endocrine disrupting chemicals (EDCs) by zebrafish (Danio rerio) embryo-based vitellogenin 1 (vtg1) mRNA expression. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 204 p.
  7. Chen, Y.Y. and Chan, K.M., 2016. Regulation of vitellogenin (vtg1) and estrogen receptor (er) gene expression in zebrafish (Danio rerio) following the administration of Cd2+ & 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Chemosphere. 147 p.
  8. Davis, L.K.; Pierce, A.L.; Hiramatsu, N.; Sullivan, C.V.; Hirano, T. and Grau, E.G., 2008. Gender-specific expression of multiple estrogen receptors, growth hormonereceptors, insulin-like growth factors and vitellogenins, and effects of 17 beta-estradiol in the male tilapia (Oreochromis mossambicus). General and comparative endocrinology. Vol. 156, No. 3, pp: 544-551.
  9. Devlin, R.H. and Nagahama, Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture. Vol. 208, pp: 3-4.
  10. Dong, M.; Zhu, L.; Shao, B.; Zhu, S.; Wang, J.; Xie, H. and Wang, F., 2013. The effects of endosulfan on cytochrome P450 enzymes and glutathione S-transferases in zebrafish (Danio rerio) livers. Ecotoxicology and Environmental Safety. Vol. 92, pp: 1-9.
  11. Henry, T.B.; McPherson, J.T.; Rogers, E.D.; Heah, T.P.; Hawkins, S.A.; Layton, A.C. and Sayler, G.S., 2009. Changes in the relative expression pattern of multiple vitellogenin genes in adult male and larval zebrafish exposed to exogenous estrogens. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. Vol. 154, No. 1, pp: 119-126.
  12. Hilscherova, K.; Jones, P.D.; Gracia, T.; Newsted, J.L.; Zhang, X.; Sanderson, J.T.; Yu, R.M.; Wu, R.S. and Giesy, J.P., 2004. Assessment of the effects of chemicals on the expression of ten steroidogenic genes in the H295R cell line using real-time PCR. Toxicological Sciences. Vol. 81, No. 1, pp: 78-89.
  13. Hong, Y.; Yu, B.; Sherman, M.; Yuan, Y.C.; Zhou, D. and Chen, S., 2007. Molecular Basis for the Aromatization Reaction and Exemestane-Mediated Irreversible Inhibition of Human Aromatase. Molecular Endocrinology.Vol. 21, No. 2. pp: 401-414.
  14. Hou, J.; Li, L.; Wu, N.; Su, Y.; Lin, W.; Li, G. and Gu, Z., 2015. Reproduction impairment and endocrine disruption in female zebrafish after long-term exposure to MC-LR: a life cycle assessment. Environmental Pollution. 208 p.
  15. Husoy, A.M.; Myers, M.S. and Goksoyr, A., 1996. Cellular localization of cytochrome P450 (CYPlA) induction and histology in Atlantic cod (Gadus morhua L) and European flounder (Platichthys flesus) after environmental exposure to contaminants by caging in Sarrfiorden, Norway. Aquatic Toxicology. Vol. 36, No. 53, pp: 111-127.
  16. Kobayashi, K.; Tamotsu, S.; Yasuda, K. and Oishi, T., 2005. Vitellogenin immune histochemistry in the exposed to 17b-estradiol & p-nonyl phenol liver the testis of the medaka Oryzias latipes. Zool. Sci. Vol. 22, No. 4, pp: 453-461.
  17. Korkmaz, C. and Dönmez, A.E., 2017. Effects of Diazinon on 17β-estradiol, Plasma Vitellogenin and Liver and Gonad Tissues of Common Carp (Cyprinus carpio). Turkish J of Fisheries and Aquatic Sciences. Vol. 17, No. 3, pp: 629-640.
  18. Kuivila, K.M. and Foe, C.G., 1995. Concentrations, transport and biological effects of dormant spray pesticides in the San Francisco Estuary California. Environmental Toxicology and Chemistry. Vol. 14, No. 7, pp: 1141-1150.
  19. Kwon, B.; Ha, N.; Jung, J.; Kim, P.G.; Kho, Y.; Choi, K. and Ji, K., 2016. Effects of Barium Chloride Exposure on Hormones and Genes of the Hypothalamic–Pituitary–Gonad Axis & Reproduction of Zebrafish. Bulletin of environmental contamination and toxicology. Vol. 96, No. 3. pp: 341-346.
  20. Lange, I.G.; Hartel, A. and Meyer, H.H., 2003. Evolution of oestrogen functions in verte-brates. The Journal of steroid biochemistry and molecular biology. Vol. 83, pp: 1-5.
  21. Lee, J.; Park, N.Y.; Kho, Y. and Ji, K., 2018. Effects of 4 Hydroxyphenyl 4-Isoprooxyphenylsulfone (BPSIP) Exposure on reproduction and endocrine system of Zebrafish. Environ science & technology. Vol. 52, No. 3, pp:  1506-1513.
  22. Liley, N.R. and Stacey, N.E., 1983. Hormones, pheromones, and reproductive behavior in fish. Fish Physiology. 9 p.
  23. Livak, K.J. and Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the  method. Methods. Vol. 25, No. 4, pp: 402-408.
  24. Marin, M.G. and Matozzo, V., 2004. Vitellogenin induction as a biomarkerof exposure to estrogenic compounds in aquatic environments. Marine Pollution Bulletin. Vol. 48, No. 9, pp: 835-539.
  25. Mills, L. and Chichester, C., 2005. Review of evidence: are endocrine-disrupting chemicals in the aquatic environment impacting fish populations? Science of the Total Environment. Vol. 343, pp: 1-3.
  26. Park, C.B.; Aoki, J.; Lee, J.S.; Nagae, M.; Lee, Y.D.; Sakakura, Y.; Hagiwara, A. and Soyano, K., 2010. The effects of 17β-estradiol on various reproductive parameters in the hermaphrodite fish Kryptolebias marmoratus. Aquatic toxicology. Vol. 96, No. 4, pp: 273-279.
  27. Pereira, R.; Pereira, M.L.; Ribeiro, R. and Goncalve, F., 2006. Tissue and hair residues and histopathology in wild rats (Rattus rattus) and Algerian mice (Mus spretus) from and abandoned mine area (Southeast Portugal). Environmental Pollution. Vol. 139, No. 3, pp: 561-575.
  28. Schelenk, D., 2006. Mechanisms of sterioselective sulfoxidin and toxicity of organophosphate, fenthion, in three species. Marine Environment Research. 62 p.
  29. Sofikitis, N.; Giotitsas, N.; Tsounapi, P.; Baltogiannis, D.; Giannakis, D. andPardalidis,N.,2008. Hormonal regulation of spermatogenesis and spermiogenesis. The J of steroid biochemistry and molecular biology. Vol. 109, pp: 3-5.
  30. Solé, M.; Raldua, D.; Piferrer, F.; Barceló, D. and Porte, C., 2003. Long-term exposure effects in vitellogenin, sex hormones, and biotransformation enzymes in female carp in relation to a sewage treatment works. Ecotoxicology and Environmental Safety. Vol. 56, No. 3, pp: 373-380.
  31. Soto, A. M., Sonnenschein, C., Chung, K. L., Fernandez, M. F., Olea, N., Serrao, F. O.  1995. The E- SREEN assay as a tool to identifyestrogens: an update on estrogenic environmental pollutants. Environmental Health Persp. Vol. 103, No. 7, pp: 113-122.
  32. Thomas, P.; Tubbs, C.; Berg, H. and Dressing, G., 2007. Sex steroid hormone receptors in fish ovaries. The Fish Oocyte. Springer Netherlands. 
  33. Uchida, D.; Yamashita, M.; Kitano, T. and Iguchi, T., 2004. An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex reversal. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. Vol. 137, No. 1, pp: 11-20.
  34. Van Der Geest, H.G.; Stuijfzand, S.C.; Krak, M.H.S. and Admiral, W., 1997. Impact of diazinon calamity in 1996 on the aquatic macroinvertebrates in the river Mesue. The Netherlands J of Aquatic Ecol. Vol. 30, No. 4, pp: 327-330.
  35. Yu, L.; Liu, C.; Chen, Q. and Zhou, B., 2014. Endocrine disruption and reproduction impairment in zebrafish after long‐term exposure to DE‐71. Environmental toxicology and chemistry. Vol. 33, No. 6, pp: 1354-1362.
  36. Yu, M.; Zhang, X.; Guo, L.; Tian, H.; Wang, W. and Ru, S., 2016. Anti estrogenic effect of semicarbazide in female zebrafish and its potential mechanisms. Aquatic Toxicology. 170 p.