اثر استفاده از سطوح مختلف اکسیدمنیزیم با خلوص بالا بر ویژگی‌های هضمی-تخمیری و تولید متان یک جیرۀ پرکنسانتره در محیط کشت ثابت

نوع مقاله : تغذیه

نویسندگان

1 گروه علوم دامی، مجتمع آموزش عالی تربت جام، تربت جام، ایران

2 گروه کشاورزی، دانشگاه پیام نور، تهران، ایران

چکیده

 از تغییر الگوی تخمیر در شکمبه، می‌توان در جهت متعادل کردن تولید متان استفاده نمود. اکسید منیزیم علاوه بر تأمین بخش اعظمی از منیزیم مورد نیاز دام، از ظرفیت بافری ویژه‌ای نیز برخوردار است و می‌تواند الگوی تخمیر در شکمبه را دستخوش تغییراتی نماید. در این پژوهش اثر استفاده از یک اکسیدمنیزیم تجاری به ­مقدار 1، 2، 3 و 4 درصد یک جیرۀ پرکنسانتره در یک محیط کشت تهیه شده ازمایع شکمبۀ گوسفند درشرایط in vitro بررسی شد. برخی پارامترهای تخمیری، تجزیه پذیری، تولیدمتان وفراسنجه‌هایتولید گاز ناشی از انکوباسیون جیره در محیط کشت اندازه‌گیری شدند. در اثر افزودن اکسیدمنیزیم، pH محیط کشت، افزایش معنی‌داری نسبت به تیمار شاهد نشان داد ولی اسیدهای چرب فرار کل (TVFA) تغییر نکرد. کم ترین مقدار نیتروژن آمونیاکی (23/26 میلی‌گرم/دسی‌لیتر) در سطح 4 درصد اکسیدمنیزیم مشاهده شد. فراسنجه‌های تولید گاز (گاز 12، 24، 48 و 72 ساعت و نرخ ثابت تولید گاز) و تولید متان در تیمارهای دارای اکسیدمنیزیم،کاهش معنی‌داری نسبت به تیمارشاهد نشان داد. اگرچه ضریب تفکیک پذیری(PF)و تودۀ میکروبی تولیدی، تحت تأثیر تیمارها قرار نگرفت، اما راندمان سنتز تودۀ میکروبی در تیمارهای دارای اکسیدمنیزیم افزایش معنی‌داری نشان داد. به‌نظر می‌رسد که کاربرد اکسیدمنیزیم می‌تواند الگوی تخمیر شکمبه را از طریق کاهش نرخ متان، افزایش قابلیت هضم ماده آلی و راندمان سنتز تودۀ میکروبی، بهبود بخشد، هرچند که انجام آزمایشات بیش ­تر درخصوص تعیین اثرات اکسیدمنیزیم بر روی حیوانات زنده نیز در آینده نیاز است.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of different levels of magnesium oxide with high purity on digestion-fermentation characteristics and methane emissions of a high-concentrate diet in the in vitro batch culture

نویسندگان [English]

  • Mohsen Kazemi 1
  • Moosa Vatandoost 2
1 Assistant Professor, Department of Animal Science, Higher Education Complex of Torbat-e Jam, Iran
2 Department of Agriculture, Payame Noor University, Tehran, Iran
چکیده [English]

Manipulation of ruminal fermentation can be considered as an optimization procedure for methane emissions. Although, magnesium oxide meet a large portion of the magnesium needed for ruminants, it has a proper buffering capacity and can alter the rumen fermentation pattern. In this study, the effect of a commercial magnesium oxide in the levels of 1, 2, 3 and 4% of a high-concentrate diet was investigated in an in vitro batch culture prepared from sheep's ruminal fluid. Some of fermentation and degradability parameters, methane emissions and gas production parameters were measured when the diet incubated to the culture medium. The pH of the culture medium was significantly increased compared to the control, but the total volatile fatty acids (TVFA) did not change when magnesium oxide was added to the culture medium. The lowest amount of ammonia nitrogen (23.26 mg/dL) was observed at 4% of magnesium oxide. The gas production parameters and methane emissions were significantly lower in the treatments containing magnesium oxide when compared to the control group. Although the partitioning factor (PF) and the microbial mass yield were not affected by the treatments, but the efficiency of microbial mass synthesis increased significantly in the treatments containing magnesium oxide. It seems that the use of magnesium oxide can improve the rumen fermentation pattern via enhance the efficiency of microbial mass synthesis; reduce methane yield and increase of organic matter degradability. Also, further studies are needed to determine the effects of magnesium sources according to in vivo conditions in the future.

کلیدواژه‌ها [English]

  • Magnesium oxide
  • Buffer
  • Culture medium
  • Fermentation
  • Methane emissions
  1. کاظمی، م.؛ ‌ ابراهیمی ­خرم‌آبادی، ا.؛ ولی‌ زاده، ر.؛ حیدری، س. و اسکندری ­تربقان، آ.، 1397. اثر رنگ بروموکروزول گرین بر فعالیت‌های تخمیری میکروارگانیسم‌های شکمبه و حذف آن از آب با استفاده از خاکستر پوست خربزه و بنتونیت سدیم فرآوری‌شده. نشریه علوم دامی (پژوهش و سازندگی). شماره 120، صفحات 241 تا 252.
  2. مهدوی ­راد، ن.؛ چاجی، م.؛ بوجارپور، م. و دهقان­ بنادکی، م.، 1396. بررسی ظرفیت بافری چند ترکیب بافری رایج در تغذیۀ نشخوارکنندگان با استفاده از روش عیارسنجی اسید و تأثیر آن ها بر فراسنجه های تولید گاز. نشریه علوم دامی ایران. دوره 48، شماره 4، صفحات 559 تا 571.
  3. Bach, A.; Guasch, I.; Elcoso, G.; Duclos, J. and Khelil-Arfa, H., 2017. Modulation of rumen pH by sodium bicarbonate and a blend of different sources of magnesium oxide in lactating dairy cows submitted to a concentrate challenge. Journal of Dairy Science. Vol. 101, pp: 1-12.
  4. Bargo, F.L.; Kolver, E. and Delahoy, J., 2003. Invited review: production and digestion of supplemented dairy cows on pasture. Journal of Dairy Science. Vol. 86, No. 1, pp: 1-42.
  5. Barnett, A.J.G. and Reid, R., 1957. Studies on the production of volatile fatty acids from grass in artificial rumen. 1. Volatile fatty acids production from fresh grasses. The Journal of Agricultural Science (Cambridge). Vol. 48, pp: 315-321.
  6. Beauchemin, K.A. and Yang, W.Z., 2005. Effects of physically effective fiber on intake, chewing activity, and ruminal acidosis for dairy cows fed diets based on corn silage. Journal of Dairy Science. Vol. 88, No. 6, pp: 2117-2129.
  7. Beauchemin, K.A.; Kreuzer, M.; O’Mara, F. and McAllister, T.A., 2008. Nutritional management for enteric methane abatement: a review. Animal Production Science. Vol. 48, pp: 21-27.
  8. Beede, D., 2017. Can we differentiate supplemental magnesium sources nutritionally? pp: 99-107 in Proc. Tri-State Dairy Nutrition Conference. M. L. Eastsridge, ed. Fort Wayne, IN.
  9. Benchaar, C. and Greathead, H., 2011. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Animal Feed Science and Technology. Vol. 166-167, pp: 338-355. 
  10. Blummel, M. and Ørskov, E.R., 1993‌. Comparison of in vitro gas production and nylon bag degradability of roughage in predicting feed intake in cattle. Animal Feed Science and Technology. Vol. 40, pp: 109-119.
  11. Blummel, M.; Makkar, H.P.S. and Becker, K., 1997. In vitro gas production: a technique revisited. Journal of Animal Physiology and Animal Nutrition. Vol. 77, pp: 24-34.
  12. Blummel, M.; Makkar, H.P.S. and Becker, K., 1997. In vitro gas production: a technique revisited. Journal of Animal Physiology and Animal Nutrition. Vol. 77, pp: 24-34.
  13. Blummel, M.; Steingass, H. and Becker, K., 1997. The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for prediction of voluntary feed intake of roughages. British Journal of Nutrition. Vol. 77, pp: 911-921.
  14. Calsamiglia, S.; Blanch, M.; Ferret, A. and Moya, D., 2012. Is subacute ruminal acidosis a pH related problem? Causes and tools for its control. Animal Feed Science and Technology. Vol. 172, pp: 42-50.
  15. Castro-Montoya, J.; De Campeneere, S.; Van Ranst, G. and Fievez, V., 2012. Interactions between methane mitigation additives and basal substrates on in vitro methane and VFA production. Animal Feed Science and Technology. Vol. 176, pp: 47-60.
  16. Chalupa, W., 1981. Rumen fermentation and modification. Developments in industrial microbiology. Vol. 22, pp: 277-293.
  17. Clark, J.H. and Davis, C.L., 1980. Some aspects of feeding high producing dairy cows. Journal of Dairy Science. Vol. 63, pp: 873-85.
  18. Cottle, D.J.; Nolan, J.V. and Wiedemann, S.G., 2011. Ruminant enteric methane mitigation: A review. Journal of Animal Production Science. Vol. 51, pp: 491-514.
  19. DeVries, T.J.; Beauchemin, K.A.; Dohme, F. and Schwartzkopf-Genswein K.S., 2009. Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: Feeding, ruminating, and lying behavior. Journal of Dairy Science. Vol. 92, pp: 5067-5078.
  20. Enemark, J.M.D., 2008. The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): A review. Veterinary Journal. Vol. 176, No. 1, pp: 32-43.
  21. Erdman, R.A., 1988. Dietary buffering requirements of the lactating dairy cow: a review. Journal of Dairy Science. Vol. 71, pp: 3246-3266.
  22. Fievez, V.; Babaymo, O.J. and Demeyer, D., 2005. Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Animal Feed Science and Technology. Vol. 123, pp: 197-210.
  23. Getachew, G.; Blummel, M.; Makkar, H.P.S. and Becker, K., 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Animal Feed Science and Technology. Vol. 72, pp: 261-281.
  24. Getachew, G.; Robinson, P.H.; DePeters, E.J. and Taylor, S.J., 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Animal Feed Science and Technology. Vol. 111, No. 1-4, pp: 57-71.
  25. Herod, E.L.; Bechtle, R.M.; Bartley, E.E. and Dayton, A.D., 1978. Buffering ability of several compounds in vitro and the effect of a selected buffer combination on ruminal acid production in vitro. Journal of Dairy Science. Vol. 61, pp: 1114-1122.
  26. Hill, J.; McSweeney, C.; Andre-Denis, G.W.; Bishop-Hurley, G. and Kalantar-zadeh, K., 2016. Measuring Methane Production from Ruminants. Trends in Biotechnology.Vol. 34, No. 1, pp: 26-35.
  27. Hoover, W.H., 1986. Chemical factors involved in ruminal fiber digestion. Journal of Dairy Science. Vol. 69, No. 10, pp: 2755-2766.
  28. Horan, B.; Faverdin, P.; Delaby, L.; Rath, M. and Dillon, P., 2006. The effect of strain of Holstein-Friesian dairy cow and pasture-based system on grass intake and milk production. Journal of Animal Science. Vol. 82, No. 04, pp: 435-444.
  29. Huhtanen, P.; Cabezas-Garcia, E.H.; Utsumi, S. and Zimmerman, S., 2015. Comparison of methods to determine methane emissions from dairy cows in farm conditions. Journal of Dairy Science. Vol. 98, pp: 3394-3409.
  30. IPCC. 1996. Guidelines for National Greenhouse Gas Inventories-Greenhouse Gas Inventory Reference Manual. IPCC WGI Technical Support Unit, Bracknell, UK.
  31. Jasaitis, D.K.; Wohlt, J.E. and Evans, J.L., 1987. Influence of feed ion content on buffering capacity of ruminant feedstuffs in vitro. Journal of Dairy Science. Vol. 70, No. 7, pp: 1391-1403.
  32. Kaplan, O.; Deniz, S.; Karsli, M.A.; Nursoy, H. and Avci, M., 2010. Effects of sodium bicarbonate, magnesium oxide and dried sugar beet pulp in diets of dairy cows on milk yield, milk composition and rumen fluid and some blood parameters. Journal of Animal and Veterinary Advances. Vol. 9, No. 11, pp: 1570-1574.
  33. Kazemi, M.; Tahmasbi, A.M.; Valizadeh, R.; Naserian, A.A. and Moheghi M.M., 2009. Assessment of nutritive value of four dominant weed species in range of Khorasan distinct of Iran by in vitro and in situ techniques. Journal of Animal and Veterinary Advances. Vol. 8, No. 11, pp: 2286-2290.
  34. Khazaal, K.; Dentinho, M.T.; Ribeiro, J.M. and Ørskov, E.R., 1995. Prediction of apparent digestibility and voluntary intake of hays fed to sheep: comparison between using fiber components, in vitro digestibility or characteristics of gas production or nylon bag degradation. Animal Science. Vol. 61, pp: 527-53.
  35. Komolong, M.K.; Barber, D.G. and McNeill, D.M., 2001. Post-ruminal protein supply and N retention of weaner sheep fed on a basal diet of Lucerne hay (Medicago sativa) with increasing levels of quebracho tannins. Animal Feed Science and Technology. Vol. 92, No. 1-2, pp: 59-72.
  36. Le Ruyet, P. and Tucker, W.B., 1992. Ruminal buffers: temporal effects on buffering capacity and pH of ruminal fluid from cows fed a high concentrate diet. Journal of Dairy Science. Vol. 75, No. 4, pp: 1047-1077.
  37. Leng, R.A., 1993. Quantitative ruminant nutrition-a green science. Australian Journal of Agricultural Research. Vol. 44, pp: 363-380.
  38. Loerch, S.C.; Berger, L.L.; Gianola, D. and Fahey, J.G.C., 1983. Effects of dietary protein source and energy level on in situ nitrogen disappearance of various protein sources. Journal of Animal Science. Vol. 57, pp: 1037-1047.
  39. Makkar, H.P.S., 2004. In: Assessing Quality and Safety of Animal Feeds. FAO Animal Production and Health Series 160. Recent advances in the in vitro gas method for evaluation of nutritional quality of feed resources. In FAO, Rome. pp: 55-88.
  40. McAllister, T.A. and Newbold, C.J., 2008. Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture. Vol. 48, pp: 7-13.
  41. Makkar, H.P.S., 2010. In: In vitro screening of plant resources for extra-nutritional attributes in ruminants. In vitro screening of feed resources for efficiency of microbial protein synthesis (pp: 106-144). Nuclear and Related Methodologies (Ed.), New York, Springer.
  42. Marden, J.P.; Julien, C.; Monteils, V.; Auclair, E.; Moncoulon, R. and Bayourthe, C., 2008. How does live yeast differ from sodium bicarbonate to stabilize ruminal pH in high-yielding dairy cows? Journal of Dairy Science. Vol. 91, pp: 3528-3535.
  43. McIntosh, F.M.; Williams, P.; Losa, R.; Wallace, R.J.; Beever, D.A. and Newbold, C.J., 2003. Effects of Essential Oils on Ruminal Microorganisms and Their Protein Metabolism. Applied and Environmental Microbiology. Vol. 69, No 8, pp: 5011-5014.
  44. Menke, K.H. and Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research Development. Vol. 28, pp: 7-55.
  45. Mitsumori, M.; Shinkai, T.; Takenaka, A. and Enishi, O., 2012. Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. British Journal of Nutrition. Vol. 108, pp: 482-491.
  46. Moss, A.R. and Givens, D.I., 1993. Effect of supplement type and grass silage: concentrate ratio on methane production by sheep. The British Society of Animal Science. Vol. 1993, pp: 51-52.
  47. Nagaraja, T.G.; Newbold, C.J.; van Nevel, C.J. and Demeyer D.I., 1997. In: Hobson P.N., Stewart C.S. (eds).    Manipulation of ruminal fermentation. The Rumen Microbial Ecosystem. Springer, Dordrecht.
  48. Nooriyan Soroor, M.E. and Moeini, M.M., 2015. The effect of eucalyptus essential oil on sheep in vitro fermentation parameters and production of methane. Journal of Research in Animal Nutrition. Vol. 2, No. 3, pp: 19-26.
  49. NRC. 2007. Nutrient requirements of small ruminants: Sheep, goats, cervids, and new world camelids. 6th Edition. Washington: National Academy Press, Washington, D.C., USA. 384 p.
  50. Okeke, G.C.; Buchanan-Smith, J.G. and Grovum, W.L., 1983. Effects of buffers on ruminal rate of passage and degradation of soybean meal in steers. Journal of Animal Science. Vol. 56, No. 6, pp: 1393-1399.
  51. Ørskov, E.R. and McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science. Vol. 92, pp: 499-503.
  52. Patra, A.K. and Yu, Z., 2013. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques. Journal of Dairy Science. Vol. 96, pp: 4592-4600.
  53. Plaizier, J.C.; Krause, D.O.; Gozho, G.N. and McBride, B.W., 2008. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Veterinary Journal. Vol. 176, pp: 21-31.
  54. Rogers, J. and Davis, C.L., 1982a. Rumen volatile fatty acid production and nutrient utilization in steers fed a diet supplemented with sodium bicarbonate and monensin. Journal of Dairy Science. Vol. 65, pp: 944-952.
  55. Rogers, J.A.; Davis, C.L. and Clark, J.H., 1982b. Alteration of rumen fermentation, milk fat synthesis and nutrient utilization with minerals salts in dairy cows. Journal of Dairy Science. Vol. 65, pp: 577-586.
  56. Russell, J.B.; Strobel, H.J. and Chen, G., 1988. Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Applied and Environmental Microbiology. Vol. 54, pp: 872-877.
  57. Sallam, S.M.A., 2009. Bueno ICS, Brigide P, Godoy PB, Vittii, D.M.S.S. and Abdalla A.L. Efficiency of eucalyptus oil on in vitro ruminal fermentation and methane production. Nutritional and Foraging Ecology of Sheep and Goats. Vol. 85, pp: 267-272.
  58. SAS Institute INC. 2002. Sas user’s Guide: statistics. Statistical Analysis Systems Institute Inc. Cary NC.
  59. Stock, R.A.; Brink, D.R.; Britton, R.A.; Goedeken, F.K.; Sindt, M.H.; Kreikemeier, K.K.; Bauer, M.L. and Smith, K.K., 1987. Feeding combinations of high moisture corn and dry-rolled grain sorghum to finishing steers. Journal of Animal Science. Vol. 65, pp‌: 290-302.
  60. Tebbe, A.W.; Wyatt, D.J. and Weiss, W.P., 2018. Effects of magnesium source and monensin on nutrient digestibility and mineral balance in lactating dairy cows. Journal of Dairy Science. Vol. 101, No 2, pp: 1152-1163.
  61. Teh, T.H.; Hemken, R.W.; Bremel, D.H. and Harmon R.J., 1987. Comparison of buffers on rumen functions, turnover rate and gastric secretions in Holstein steers. Animal Feed Science and Technology. Vol. 17, pp: 257-270.
  62. Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B. and France, J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology. Vol. 48, pp: 185-197.
  63. Thomson, D.J.; Beever, D.E.; Latham, M.J. and Sharpe, M.E., 1978. The effect of inclusion of mineral salts in the diet on dilution rate, the pattern of rumen fermentation and the composition of the rumen micro flora. The Journal of Agricultural Science. Vol. 91, No. 1, pp: 1-7.
  64. Thrune, M.; Bach, A.; Ruiz Moreno, M.; Stern, M.D. and Linn, J.G., 2009. Effects of Saccharomyces cerevisiae on ruminal pH and microbial fermentation in dairy cows. Livestock Science. Vol. 124, pp: 261-265.
  65. Umucalilar, H.D. and Seker, E., 2000. Effects of sodium bicarbonate and magnesium oxide as buffers on in vitro digestibility of grains.  Veterinary Bilimleri Dergisi.Vol. 16, No. 2, pp: 129-135.
  66. Van Soest, P.J., 1994. Nutritional ecology of ruminants. 2nd edition. Cornell University Press, USA.
  67. Vercoe, E.P.; Makkar, H.P.S. and Schlink, A.C., 2010. In vitro screening of plant resources for extra nutritional attributes in ruminants: nuclear and related methodologies (Ed.), In vitro Screening of Feed Resources for Efficiency of Microbial Protein Synthesis, (pp: 106-144). New York, Springer.
  68. Wang, M.; Wang, R.; Zhang, XM.; Ungerfeld, EM.; Long, D.; Mao, HX.; Jiao, JZ.; Beauchemin, KA. and Tan, Z., 2017. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats. Journal of British Nutrition. Vol. 118, pp: 401-410.
  69. Wilson, D.V.; Evans, A.T.; Carpenter, R.A. and Mullineaux, D.R., 2004.  The effects of four anesthetic protocols on splenic size in dogs. Veterinary Anesthesia and Analgesia. Vol. 31, No. 2, pp: 102-108.
  70. Wolin, M.J., 1960. A Theoretical Rumen Fermentation Balance. Journal of Dairy Science. Vol. 43, No. 10, pp: 1452-1459.
  71. Zinno, R.A., 1991. Comparative feeding value of steam-flaked corn and sorghum in finishing diets supplemented with or without sodium bicarbonate. Journal of Animal Science. Vol. 69, pp: 105-116.