تغییرات اقلیمی و اثرات آن بر زیستگاه‌های مطلوب یوزپلنگ ‎آسیایی در مرکز ایران (مطالعه موردی: استان یزد)

نوع مقاله : محیط زیست جانوری

نویسندگان

1 گروه محیط زیست طبیعی و تنوع زیستی، دانشکده محیط زیست، سازمان حفاظت محیط زیست، کرج، ایران

2 گروه محیط زیست، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

چکیده

 زیرگونه به ­شدت درخطرانقراض یوزپلنگ آسیایی با جمعیتی کم ­تر از 40 فرد، فقط در زیستگاه‌های بیابانی فلات مرکزی کشور ایران باقی­ مانده ‎است. زیستگاه های این گونه، که شامل زیستگاه‎ های استان یزد و مناطق هم ­جوار است، از سال 1380 با بیش ­ترین کاهش جمعیت رو به‌ رو بوده است. تغییرات اقلیمی و خشکسالی بر حیات وحش و زیستگاه‌ های آن­ ها اثر مهمی دارد و در نابودی و انقراض آن ­ها بسیار اثرگذار است. از این ­رو در این پژوهش، طی یک ­دوره 14 ساله (1380 تا 1393)، به بررسی تغییرات اقلیمی زیستگاه‌ های یوز در محدوده ‎ای به مساحت 2/9 میلیون هکتار در استان یزد که مهم ­ترین مناطق انقراض محلی جمعیت یوز در ایران است، پرداخته شد. در این  تحقیق ابتدا با روش بیش ­ترین بی ‎نظمی، مدل ­سازی مطلوبیت زیستگاه یوزپلنگ انجام شد. سپس با استفاده از روش سری‌های زمانی سنجنده مودیس تغییرات بیشینه درجه حرارت سطح زمین بررسی و با کمک داده ایستگاه‎ های هواشناسی طی دوره مطالعه تغییرات مجموع بارش سالیانه بررسی گردید. ارزیابی تغییرات بیشینه درجه حرارت زمین در زیستگاه‎ های مطلوب یوزپلنگ نشان می‎دهد که 24 درصد از سطح این منطقه، با افزایش میانگین درجه حرارت طی این دوره مواجه شده است. هم چنین کاهش مجموع بارش سالیانه در قسمتی از مناطق جنوبی منطقه مطالعاتی مشهود است. اما بررسی‎ها برای شناسایی دلایل تغییرات زیستگاه یوزپلنگ آسیایی نشان ‎داد که فاکتورهای تغییرات اقلیمی، شامل تغییرات بیشینه دمای سطح زمین و تغییرات مجموع بارش سالیانه، طی دوره مطالعه معنی ‎دار نیست. از این ­رو به ­نظر می‌رسد بیش ­ترین دلیل تغییرات در زیستگاه های جنوبی منطقه مطالعاتی از زیستگاه های یوزپلنگ آسیایی طی دوره این پژوهش، عوامل غیراقلیمی است و عوامل انسانی به ­صورت مستقیم و غیرمستقیم بر این تغییرات اثر داشته‎اند.

کلیدواژه‌ها


عنوان مقاله [English]

Climate change and its effects on Asiatic Cheetah suitable habitats in Center of Iran (Case study: Yazd Province)

نویسندگان [English]

  • Ali Shams 1
  • Bagher Nezami 1
  • Behzad Raygani 1
  • Bahman shams esfand abad 2
1 Department of Natural Environment and Biodiversity, Faculty of Environment, Environmental Protection Organization, Karaj, Iran
2 Department of Environment, Arak Branch, Islamic Azad University, Arak, Iran
چکیده [English]

Asiatic Cheetah, which is critically endangered subspecies has survived only in arid habitats of the central plateau of Iran to less than 40 populations. The species population in the center of Iran, which mainly includes Yazd Province, has had the highest population decline and has lost the population dynamics. Hence, 2.9 million hectares of Yazd province’s habitats in which the species has been extinct locally were investigated for climate change over a 14-year period, from 2001 to 2014. In this study, firstly, we used the Maximum Entropy method to model the Asiatic Cheetah suitable habitat. Then, by using the Modis time series method, we identified the maximum land surface temperature and the weather stations data were used to finding the total annual precipitation changes. Assessment of the maximum temperature changes in the cheetah habitats showed that the average temperature increased by 24 percent of the study area during this period. Also, some parts of the southern part of the study area had an obvious reduction of the total annual precipitation. However, the study results showed that climate change factors, including changes in the maximum land surface temperature and total annual precipitation variations, during the study period, were not significant. Therefore, the most important reasons for the reduction of Asiatic cheetah population dynamics in the study area, during the study period are non-climatic factors.

کلیدواژه‌ها [English]

  • Climate Change
  • Asiatic Cheetah
  • Yazd Province
  • Land Surface Temperature
  • Annual Precipitation
  1. احمدی، م. و حیدری، ح.ر.، 1393. شناسایی و حفاظت اولویت‌های نقاط زیستگاهی، ارزیابی تاثیر شبکه حفاظت و بررسی کریدورهای ارتباطی زیستگاه یوزپلنگ آسیایی در فلات مرکزی ایران. پروژه حفاظت از یوزپلنگ آسیایی. سازمان حفاظت محیط زیست. 87 صفحه
  2. استان یزد. 1397. معرفی استان یزد. www.ostanyazd.ir.
  3. انجمن یوزپلنگ ایرانی. 1396. گزارش پایش جمعیت یوزپلنگ آسیایی. www.wildlife.ir.
  4. رضایی­ خوزانی، ع.؛ کابلی، م.؛ اشرفی، س. و اکبری، ح.، 1395. بررسی رژیم غذایی یوزپلنگ آسیایی (Acinonyx Jubatus Venaticus) با استفاده از روش تجزیه سرگین در منطقه حفاظت شده کوه بافق. فصلنامه محیط زیست جانوری. دوره 8، شماره 2، صفحات 1 تا 8.
  5. رضایی، م. و معماریان، ه.، 1394. کاربرد سری ­های زمانی بارش و نمایه ­های آماری اقلیمی در پیش ­بینی خشکسالی به ­کمک شبکه  CANFIS (مطالعه موردی: بیرجند- خراسان جنوبی). مجله خشک ­بوم. دوره 5، شماره 2، صفحات 51 تا 67.
  6. زمانی، ن. و قندالی، م.، 1396. مدل ­سازی و بررسی متغیرهای زیستگاهی تاثیرگذار بر پراکنش یوزپلنگ ایرانی (Acinonyx Jubatus Venaticus) در پناهگاه حیات ­وحش نایبندان، با روش تحلیل عاملی آشیان بوم‌ شناختی (ENFA). فصلنامه محیط زیست جانوری. دوره 9، شماره 3، صفحات 9 تا 16.
  7. سرهنگ‌زاده، ج.؛ اکبری، ح.؛ موسوی، س.ج. و پورچیت ‌ساز، آ.، 1392. مدل ­سازی مطلوبیت زیستگاه یوزپلنگ آسیایی در پناهگاه حیات وحش دره انجیر استان یزد. خشک­ بوم. دوره 3، شماره 2، صفحات 40 تا50.
  8. شمس ­اسفندآباد، ب.، 1393. ارزیابی مطلوبیت زیستگاه یوزپلنگ آسیایی در ایران. پروژه حفاظت از یوزپلنگ آسیایی. سازمان حفاظت محیط زیست. 173 صفحه.
  9. عباس ­زاده ­تهرانی، ن.، و صابری، ن.، 1392. ارزیابی الگوی تغییرات فصلی پوشش اراضی با تحلیل داده‌های سنجش از دوری. سومین کنفرانس برنامه‌ ریزی و مدیریت محیط زیست، تهران. 8 صفحه.
  10. کرمانی، ف.؛ رایگانی، ب.؛ نظامی ­بلوچی، ب.؛ گشتاسب، ح.؛ خسروی، ح. و حیدری، ح.، 1396. ارزیابی شاخص‌های محیط ­زیستی در انتخاب زیستگاه یوزپلنگ آسیایی (Acinonyx jubatus venaticus Griffith, 1281) به ­کمک داده‌های سری زمانی دورسنجی (مطالعه موردی: مجموعه حفاظتی توران)، فصلنامه علمی پژوهشی علوم جانوری محیط زیست. سال 9، شماره 1، صفحات 1 تا 12.
  11. مرادی، ف.؛ مختاری، م.ح. و سرکارگراردکانی، ع.، 1392. مقایسه تکنیک ­های کشف تغییرات کاربری اراضی مناطق شهری و ارایه مدل بهینه ارزیابی تغییرات با استفاده ازسنجش از دور و gis. کنفرانس بین­ المللی عمران، معماری و توسعه پایدار شهری. 13 صفحه.
  12. مروتی،م.؛ کابلی، م.؛ پناهنده، م.؛ سرباز، م. و احمدیان، ش.، 1396. مدل ­سازی زیستگاه یوزپلنگ آسیایی (Acinonyx Jubatus Venaticus) تحت تاثیر تغییرات اقلیمی در ایران با استفاده از نرم‌ افزار MaxEnt. فصلنامه محیط زیست جانوری. دوره 9، شماره 1، صفحات 13 تا 20.
  13. موسوی، س.ع.؛ فرح‌ پور، م.؛ شکری، م.؛ سلیمانی، ک. و گودرزی، م.، 1385. بررسی روند تغییرات انبوهی پوشش گیاهی در قسمتی از حوضه سد لار در یک دوره 25 ساله با استفاده تلفیقی از GIS وRS. فصلنامه تحقیقات مرتع و بیابان ایران. دوره 13، شماره 3، صفحات 186 تا 200.
  14. نظامی ­بلوچی، ب.، 1396. اکولوژی و وضعیت یوزپلنگ آسیایی در ایران. انتشارات جهاد دانشگاهی. 93 صفحه.
  15. نوحی، ک. و عسگری، ا.، 1384. مطالعه خشکسالی و دوره ‏های برگشت ترسالی‏ ها و خشکسالی ‏ها در منطقه قم. مجله خشکی و خشکسالی کشاورزی. شماره 15، صفحات 1 تا 17.
  16. همامی، م.؛ اسماعیلی، س. و سفیانیان، ع.، 1394. پیش‌بینی پراکنش یوزپلنگ آسیایی، پلنگ ایرانی و خرس قهوه‌ای در پاسخ به متغیرهای محیطی در استان اصفهان. بوم شناسی کاربردی. دوره 4، شماره 13، صفحات 63 تا 51.
  17. Ahmadi, M.; Nezami Balouchi, B.; Jowkar, H.; Hemami, M. R.; Fadakar, D.; Malakouti‐Khah, S. and Ostrowski, S., 2017. Combining landscape suitability and habitat connectivity to conserve the last surviving population of cheetah in Asia. Diversity and Distributions. Vol. 23, No. 6, pp: 592-603.
  18. Andresen, L.; Everatt, K.T. and Somers, M.J., 2014. Use of site occupancy models for targeted monitoring of the cheetah. Journal of Zoology. Vol. 292, No. 3, pp: 212-220.
  19. Baugh, W.M. and Groeneveld, D.P., 2006. Broadband vegetation index performance evaluated for a low‐cover environment. International Journal of Remote Sensing. Vol. 27, No. 21, pp: 4715-4730.
  20. Bissett, C. and Bernard, R.T.F., 2007. Habitat selection and feeding ecology of the cheetah (Acinonyx jubatus) in thicket vegetation: is the cheetah a savanna specialist? Journal of Zoology. Vol. 271, No. 3, pp: 310-317.
  21. Boast, L.K., 2014. Exploring the causes of and mitigation options for human-predator conflict on game ranches in Botswana: How is coexistence possible? Thesis presented for the degree of Doctor of Philosophy in the Department of Zoology University of Cape Town. 172 p.
  22. Broomhall, L.S.; Mills, M.G.L. and Du Toit, J.T., 2003. Home range and habitat use by cheetahs (Acinonyx jubatus) in the Kruger National Park. Journal of Zoology. Vol. 26, No. 2, pp: 119-128.
  23. Cao, R.; Jiang, W.; Yuan, L.; Wang, W.; Lv, Z. and Chen, Z., 2014. Inter-annual variations in vegetation and their response to climatic factors in the upper catchments of the Yellow River from 2000 to 2010. Journal of Geographical Sciences. Vol. 24, No. 6, pp: 963-979.
  24. Caro, T., 1994. Cheetahs of the Serengeti Plains: group living in an asocial species. University of Chicago Press. 197 p.
  25. Ceccato, P.; Vancutsem, C. and Temimi, M., 2010. Monitoring air and land surface temperatures from remotely sensed data for climate-human health applications. In Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International. pp: 178-180. IEEE.
  26. Conservation of Asian Cheetah Project. 2008. Performance Report and Achievements. Department of Environment. 213 p.
  27. Conservation of Asian Cheetah Project. 2010. Performance Report and Achievements. Department of Environment. 254 p.
  28. Farhadinia, M.S.; Akbari, H.; Mousavi, S.J.; Eslami, M.; Azizi, M.; Shokouhi, J. and Hosseini-Zavarei, F., 2013. Exceptionally long movements of the Asiatic cheetah Acinonyx jubatus venaticus across multiple arid reserves in central Iran. Oryx. Vol. 47, pp: 427-430.
  29. Farhadinia, M.S.; Gholikhani, N.; Behnoud, P.; Hobeali, K.; Taktehrani, A.; Hosseini-Zavarei, F. and Hunter, L.T., 2016. Wandering the barren deserts of Iran: Illuminating high mobility of the Asiatic cheetah with sparse data. Journal of Arid Environments. Vol. 134, pp: 145-149.
  30. Firouz, E., 2005. The complete fauna of Iran. IB Tauris. 239 p.
  31. Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.S. and Reichstein, M., 2013. Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sensing. Vol. 5, No. 5, pp: 2113-2144.
  32. Glick, P.; Stein, B.A. and Edelson, N.A., 2010. Scanning the conservation horizon: a guide to climate change vulnerability assessment. National Wildlife Federation, Washington DC. 172 p.
  33. Guttman, N.B., 1998. Comparing the Palmer drought index and the standardized precipitation index. JAWRA Journal of the American Water Resources Association, Vol. 34, pp: 113-121.
  34. Hanski, I. and Ovaskainen, O., 2000. The meta population capacity of a fragmented landscape. Nature. Vol. 404, pp: 679-755.
  35. Hayward, M.W.; Hofmeyr, M.; O'Brien, J. and Kerley, G.I.H., 2006. Prey preferences of the cheetah (Acinonyx jubatus) (Felidae: Carnivora): morphological limitations or the need to capture rapidly consumable prey before kleptoparasites arrive. Journal of Zoology. Vol. 270, No. 4, pp: 615-627.
  36. Houghton, J.T., 2001. Appendix I–Glossary. Climate change 2001: the scientific basis: contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. 149 p.
  37. Hunter, J.S.; Durant, S.M. and Caro, T.M., 2007. To flee or not to flee: predator avoidance by cheetahs at kills. Behavioral Ecology and Sociobiology. Vol. 61, No. 7, pp: 1033-1042.
  38. IUCN. 2014. IUCN Red List of Threatened Species. Accessed: 22 February 2014. www.iucnredlist.org.
  39. Jin, M.; Dickinson, R.E. and Zhang, D.A., 2005. The footprint of urban areas on global climate as characterized by MODIS. Journal of climate. Vol. 18, No. 10, pp: 1551-1565.
  40. Jourabchian, A.R. and Farhadinia, M.S., 2008. Final report on Conservation of the Asiatic cheetah, its Natural Habitats and Associated Biota in Iran. Project Number IRA/00 G. Vol. 35, 171 p.
  41. Karami, M., 1992. Cheetah distribution in Khorasan Province, Iran. Cat News. No. 16, 4 p.
  42. Kay, A.L.; Davies, H.N.; Bell, V.A. and Jones, R.G., 2009. Comparison of uncertainty sources for climate change impacts: flood frequency in England. Climatic Change. Vol. 92, No. 1-2, pp: 41-63.
  43. Kendall, M., 1975. Multivariate analysis. Charles Griffin.
  44. Kogan, F.N., 1995. Application of vegetation index and brightness temperature for drought detection. Advances in Space Research. Vol. 15, No. 11, pp: 91-100.
  45. Kundzewicz, Z. and Robson, A., 2000. Detecting trend and other changes in hydrological data. World Meteorological Organization. 234 p.
  46. Liu, W.T. and Kogan, F.N., 1996. Monitoring regional drought using the vegetation condition index. International Journal of Remote Sensing. Vol. 17, No. 4, pp: 2761-2782.
  47. Lozano-Garcia, D.F.; Fernandez, R.N.; Gallo, K.P. and Johannsen, C.J., 1995. Monitoring the 1988 severe drought in Indiana, USA using AVHRR data. International Journal of Remote Sensing. Vol. 16, No. 7, pp: 1327-1340.
  48. Mallon, D.P., 2007. Cheetahs in Central Asia: a historical summary. Cat news. No. 46, pp: 4-7.
  49. Marker, L.; Dickman, A. and Schumann, M., 2005. Using livestock guarding dogs as a conflict resolution strategy on Namibian farms. Carnivore Damage Prevention News. pp: 28-32.
  50. Mech, S G. and Hallett, J.G., 2001. Evaluating the effectiveness of corridors: a genetic approach. Conservation Biology. Vol. 15, No. 2, pp: 467-474.
  51. Metzger, M.J.; Schröter, D.; Leemans, R. and Cramer, W., 2008. A spatially explicit and quantitative vulnerability assessment of ecosystem service change in Europe. Regional Environmental Change. Vol. 8, No. 3, pp: 91-107.
  52. Mills, M.G.L. and Harvey, M., 2001. African predators. Smithsonian Institution Press. 186 p.
  53. Moran, M.S.; Clarke, T.R.; Inoue, Y. and Vidal, A., 1994. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote sensing of Environment. Vol. 49, No. 3, pp: 246-263.
  54. Nowell, K. and Jackson, P., 1996. Wild cats: status survey and conservation action plan. Gland: IUCN. Vol. 382, 177 p.
  55. Ordiz, A.; Bischof, R. and Swenson, J.E., 2013. Saving large carnivores, but losing the apex predator. Biological Conservation. Vol. 168, pp: 128-133.
  56. Pettorelli, N.; Bro-Jørgensen, J.; Durant, S.M.; Blackburn, T. and Carbone, C., 2009. Energy availability and density estimates in African ungulates. The American Naturalist. Vol. 173, No. 5, pp: 698-704.
  57. Rabinowitz, A. and Zeller, K.A., 2010. A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biological conservation. Vol. 143, No. 4, pp: 939-945.
  58. Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association. Vol. 63, No. 324, pp: 1379-1389.
  59. Solomon, S., 2007. The physical science basis: Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change (IPCC), Climate change. 996 p.
  60. Teachers, I., 1995. Technology: Making the Connection. In Washington: Office of Technology Assessment, Congress of the United States/US Government Printing Office. 231 p.
  61. Thiel, H., 1950. A rank-invariant method of linear and polynomial regression analysis, Part 3. In Proceedings of Koninalijke Nederlandse Akademie van Weinenschatpen A. Vol. 53, pp: 1397-1412.
  62. Walter, C.; McBratney, A.B.; Douaoui, A. and Minasny, B., 2001. Spatial prediction of topsoil salinity in the Chelif Valley, Algeria, using local ordinary kriging with local variograms versus whole-area variogram. Soil Research. Vol. 39, pp: 259-272.
  63. Wang, G.X.; Li, Q.; Cheng, G.D. and Shen, Y.P., 2001. Climate change and its impact on the eco environment in the source regions of the Yangtze and Yellow Rivers in recent 40 years. Journal of Glaciology and Geocryology. Vol. 23, No. 4, pp: 346-352.
  64. Wang, P.X. and Wei, Y.M., 1998. Research, Demonstration and Extension of Sustainable Farming Systems for Rainfed Agriculture. 161 p.
  65. Warren, D.L.; Glor, R.E. and Turelli, M., 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography. Vol. 33, No. 3, pp: 607-611.
  66. Weng, Q.; Fu, P. and Gao, F., 2014. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote sensing of environment. Vol. 145, pp: 55-67.
  67. Zar, J.H., 1999. Biostatistical analysis. Pearson Education India. 213 p.