اثر اسید مالیک جیره بر عملکرد رشد و هیستومورفولوژی بافت روده ماهی طلایی (Carassius auratus)

نوع مقاله : تغذیه

نویسندگان

1 گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه سرا، ایران

2 گروه شیلات، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

چکیده

در تحقیق حاضر تاثیر اسید مالیک جیره بر رشد و هیستومورفولوژی بافت روده ماهی طلایی (Carassius auratus) مورد مطالعه قرار گرفت. برای این منظور 120 عدد ماهی طلایی با میانگین وزن 0/09±14/62 (میانگین ± خطای استاندارد) گرم در 4 تیمار و 3 تکرار تقسیم شدند. تیمارها شامل غلظت­ های مختلفی از اسید مالیک با مقادیر صفر (شاهد)، 2/5، 5 و 10 گرم به ­ازای هر کیلوگرم غذا بود. غذادهی ماهی ­ها روزانه 3 بار در حد سیری و به ­مدت 8 هفته صورت گرفت. زیست­ سنجی ماهی­ ها هر دو هفته یک ­بار انجام شد و در پایان دوره آزمایش از هر تکرار 3 ماهی جهت بررسی ­های هیستومورفولوژیکی بافت روده نمونه ­گیری شد. در نهایت از لحاظ وزن نهایی، درصد افزایش وزن بدن، نرخ رشد ویژه، ضریب تبدیل غذایی و شاخص وضعیت بین تیمارهای مختلف تفاوت معنی­ دار آماری مشاهده نشد (0/05<P). با بررسی بافت روده نیز تفاوت معنی ­دار آماری در طول پرزها، قطر بافت پوششی و هم ­چنین تعداد سلول­ های جامی شکل روده مشاهده نشد (0/05<P). نتایج پژوهش کنونی نشان داد که استفاده از اسید مالیک تاثیری بر عملکرد رشد و هیستومورفولوژی روده ماهی طلایی ندارد.

کلیدواژه‌ها


عنوان مقاله [English]

The effects of dietary malic acid on growth performance and intestinal histomorphology in goldfish (Carassius auratus)

نویسندگان [English]

  • Samira Sedighi 1
  • Mirmasoud Sajjadi 1
  • Seyed Hossein Hoseinifar 2
1 Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
2 Department of Fisheries, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Iran
چکیده [English]

In the present study, the effects of dietary malic acid on growth and intestinal histomorphology of goldfish (Carassius auratus) was investigated. 120 goldfish (mean initial weight 14.62 ± 0.92 g) (Mean ± Standard Error) were divided into 4 treatments and 3 replicates. Treatments included different concentrations of malic acid 0 (control), 2.5, 5 and 10 g/kg diet. Fish feeding was carried out three times a day for 8 weeks. Fish biometry performed every two weeks and at the end of the experiment, six fish per each tank were sampled for histological study of the intestinal tissue. Results showed that there were not significant differences in final weight, percentage of body weight gain, specific growth rate, feed conversion ratio and condition factor between different treatments (P> 0.05). There were not significant statistical differences in the length of the villi, the diameter of the tunica mascularis and also the number of calyx in the intestinal tract between different treatments (P> 0.05). The results of the present study showed that the use of malic acid does not affect the growth performance and intestinal histomorphology of goldfish.

کلیدواژه‌ها [English]

  • Organic acid
  • Growth
  • Histomorphology
  • Cyprinids
  1. اکرمی، ر.؛ حاجی ­مرادلو، ع.؛ عابدیان ­کناری، ع؛ و علی ­محمدی، ا.، 1387. اثرات سطوح متفاوت پروبیوتیک اینولین جیره غذایی بر شاخص های رشد، تغذیه، نرخ بازماندگی و ترکیب بدن فیل­ ماهیان (Huso huso) جوان پرورشی. مجله علمی پژوهشی دانشگاه کشاورزی و منایع طبیعی گرگان. شماره 5، صفحات 55 تا 65.
  2. Baruah, K.; Sahu, N.P.; Pal, A.K.; Jain, K.K.;Debnath, D. and Mukherjee, S.C., 2007a.Dietary microbial phytase and citric acidsynergistically enhances nutrient digestibility andgrowth performance of Labeo rohita (Hamilton) juveniles at sub-optimal protein level. AquacultureResearch. Vol. 38, pp: 109-120.
  3. Baruah, K.; Sahu, N.P.; Pal, A.K.; Debnath, D. and Yengkokpam, S., 2007b. Interactions of dietary microbial phytase, citric acid and crude protein level on mineral utilization by Rohu, Labeo rohita, juveniles. Journal of the World Aquaculture Society. Vol. 38, pp: 238-249.
  4. Booth, I.R. and Stratford, M., 2003. Acidulants and low pH, in: Russel, N.J., Gould, G.W. (Eds.), Food Preservatives. Kluwer Academic/Plenum Publishers, New York. pp: 25-47.
  5. Carbone, D. and Faggio, C., 2016. Importance of prebiotics in aquaculture as immunostimulants: Effects on immune system of Sparus aurata and Dicentrarchus labrax. Fish & Shellfish Immunology. Vol. 54, pp: 172-178.
  6. da Silva, B.C.; Vieira, F.D.N.; Mourino, J.L.P.; Bolivar, N. and Seiffert, W.Q., 2016. Butyrate and propionate improve the growth performance of Litopenaeus vannamei. Aquaculture Research.Vol. 47, pp: 612-623.
  7. Dawood, M.A.O. and Koshio, S., 2016. Recent advances in the role of probiotics and prebiotics in carp aquaculture. Aquaculture. Vol. 454, pp: 243-251.
  8. Defoirdt, T.Y.; Boon, N.Y.; Sorgeloos, P.Y.; Verstraete, W. and Bossier, P., 2009. Short-chain fatty acids and poly bhydroxyalkanoates: (New) Biocontrol agents for a sustainable animal production. Biotechnology Advances. Vol. 27, pp: 680-685.
  9. Dehghani, N. and Jahanian, R., 2012. Effects of dietary organic acid supplementation on immune responses and some blood parameters of broilers fed diets with different protein levels. World’s Poultry Science Journal, Supplement 1, Expanded Abstract-Poster Presentation. Book of Abstracts. WPC2012 Salvador, Bahia, Brazil. pp: 5-9.
  10. Diebold, G. and Eidelsburger, U., 2006. Acidification of diets as an alternative to antibiotic growth promoters. In: Antimicrobial Growth Promoters: Where do we go from here. Barug, D.; de Jong, L.; Kies, A.K. and Verstegen, M.W.S., (Eds.). Wageningen Academic Publishers, Wageningen, The Netherlands. pp: 311-327.
  11. Gao, Y.L.; Storebakken, T.; Shearer, K.D.; Penn, M. and Overland, M., 2011. Supplementation of fishmeal and plant protein-based diets for rainbow trout with a mixture of sodium formate and butyrate. Aquaculture. Vol. 311, pp: 233-240.
  12. Gislason, G.; Olsen, R. and Hinge, E., 1996. Comparative effects of dietary Na+‐lactate on Arctic char, Salvelinus alpinus L., and Atlantic salmon, Salmo salar L. Aquaculture Research. Vol. 27, pp: 429-435. 
  13. Hampson, D.J., 1986. Alteration in piglet small intestinal structure at weaning. Research in Veterinary Science. Vol. 40, pp: 39-40.
  14. Hassaan, M.S.; Soltan, M.A.; Jarmołowicz, S.J. and Abdo, H.S., 2017. Combined effects of dietary malic acid and Bacillus subtilis on growth, gut microbiota and blood parameters of Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition.Vol. 00, pp: 1- 11.
  15. Hossain, M.A.; Pandey, A. and Satoh, S., 2007. Effects of organic acids on growth and phosphorus utilization in red sea bream Pagrusmajor. Fisheries Science. Vol. 73, pp: 1309-1317.
  16. Jones, D.L., 1998. Organic acids in the rhizospherea critical review. Plant and Soil. Vol. 205, pp: 25-44.
  17. Khajepour, F. and Hosseini, S.A., 2012. Citric acid improves growth performance and phosphorus digestibility in Beluga, (Huso huso) fed diets where soybean meal partly replaced fish meal. Animal Feed Science and Technology. Vol. 171, pp: 68-73.
  18. Lim, C.; Lückstädt, C.; Webster, C. and Kesius, P., 2015. Organic Acids and Their Salts. In: Dietary Nutrients, Additives, and Fish Health. Edited by Lee, C.S.; Lim, C.; Delbert, M. and Gatlin, D., Willy Blackwell. USA. pp: 305-319.
  19. Liu, W.; Yang, Y.; Zhang, J.; Gatlin, M.D.; Ringo, E. and Zhou, Z., 2014. Effects of dietary microencapsulated sodium butyrate on growth, intestinal mucosal morphology, immune response and adhesive bacteria in juvenile common carp (Cyprinus carpio) pre-fed with or without oxidised oil. British Journal of Nutrition. Vol. 112, pp: 15-29.
  20. Lückstädt, C., 2008. The use of acidifiers in fish nutrition. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. Vol. 3, pp: 1-8.
  21. Lim, C.; Lückstädt, C. and Klesius, P.H., 2010. Review: Use of organic acids, salts in fish diets. Global Aquaculture Advocate. Vol. 5, pp: 45-46.
  22. Munakata, A. and Kobayashi, M., 2010. Endocrine control of sexual behavior in teleost fish. General and Comparative Endocrinology. Vol. 165, pp: 456-468.
  23. Nermeen, M.A. and Naela, M.R., 2014. Eubiotic effect of a dietary acidifier (potassium diformate) on the health status of cultured Oreochromis niloticus. Journal of Advanced Research. Vol. 6, pp: 621-629.
  24. Ng, W.K., 2015. Recent advances in the understanding and mitigation of EMS/AHPND. Aquaculture Asia Pacific. Vol. 11, pp: 35-39.
  25. Ng, W.K. and Koh C.B., 2016. The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Reviews in Aquaculture. Vol. 0, pp: 1-27.
  26. Owen, M.A.G.; Waines, P.; Bradley, G. And Davies, S., 2006. The effect of dietary supplementation ofsodium butyrate on the growth and microflora of Clarias gariepinus (Burchell 1822), Abstract from the 12th International Symposium Fish Nutrition and Feeding, Biarritz, France.
  27. Pandey, A. and Satoh, S., 2008. Effects of organic acids on growth and phosphorus utilization in Rainbow trout Oncorhynchus mykiss. Fisheries Science. V0l. 74, pp: 867-874.
  28. Perdikaris, C.; Nathanailides, C.; Gouva, E.; Gabriel, U.U.; Bitchava, K.; Athanasopoulou, F. and Paschos, I., 2010. Size-relative effectiveness of clove oil as an anaesthetic for rainbow trout (Oncorhynchus mykiss Walbaum, 1792) and goldfish (Carassius auratus Linnaeus, 1758). Acta Veterinaria Brno. Vol. 79, pp: 481-490.
  29. Pryor, G.S.; Royes, J.B.; Chapman, F.A. and Miles, R.D., 2003. Mannanoligosaccharides in fish nutrition: effects of dietary supplementation on growth and gastrointestinal villi structure in Gulf of Mexico sturgeon. North American Journal of Aquaculture. Vol.  65, pp: 106-111.
  30. Ricke, S.C., 2003. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science. Vol. 82, pp: 632-639.
  31. Ringo, E. and Strom, E., 1994. Microflora of arctic charr (Salvelinus alpinus): Gastrointestinal microflora of free-living fish and effect of diet and salinity on intestinal microflora. Aquaculture and Fisheries Management. Vol. 25, pp: 623-629.
  32. Romano, N.; Koh, C.B. and Ng, W.K., 2015. Dietary microencapsulated organic acids blend enhances growth, phosphorus utilization, immune response, hepatopancreatic integrity and resistance against Vibrio harveyi in white shrimp, Litopenaeus vannamei. Aquaculture. Vol. 435, pp: 228-236.
  33. Roberts, R.J., 2001. Fish Pathology. 3rd Edition. W. B. Saunders, Philadelphia. pp: 208-375.
  34. Sales, J. and Janssens, G.P.J., 2003. Nutrient requirements of ornamental fish. Aquatic Living Resources. Vol. 16, pp: 533-540.
  35. Salou, P.; Leroy, M.; Goma, G. and Pareilleux, A., 1991. Influence of pH and malate-glucose ratio on the growth kinetics of Leuconostoc oenos. Applied Microbiology and Biotechnology. Vol. 36, pp: 87-91.
  36. Sarker, S. A.; Satoh, S. and Kiron, V., 2005. Supplementation of citric acid and amino acid chelated trace element to develop environment-friendly feed for red sea bream, Pagrus major. Aquaculture. Vol. 248, pp: 3-11.
  37. Sell, J.L.; Angel, C.R.; Piquer, F.J.; Mallarino, E.G. and Al-Batshan, H.A., 1991. Development patterns of selected characteristics of the gastrointestinal tract of young turkey. Poultry Science. Vol. 70, pp: 1200- 1205.
  38. Shah, S.Z.H.; Afzal, M.; Khan, S.Y.; Hussain, S.M. and Habib, R.Z., 2015. prospects of using citric acid as fish feed supplement.prospects of using citric acid as fish feed supplement. International Journal of Agriculture and Biology. Vol. 17, pp: 1-8.
  39. Sheikholeslami Amiri, M.; Yousefian, M.; Yavari,V.; Safari, R. and Ghiyasi, M., 2012. Evaluation ofinulin as prebiotic on rainbow trout (Oncorhynchusmykiss) (Walbaum, 1972) immunity characteristicsand resistance to streptococcus sp infection. IranianJournal of Biology. Vol. 24, pp: 303-312.
  40. Silvaa,B.C.; Jesusc, G.F.A.; Seiffertb, W.Q.; Vieirab, F.N.; Mouriñob, J.L.P.; Jatobác, A. and Nolasco-Soriad, H., 2016. The effects of dietary supplementation with butyrate and polyhydroxybutyrate on the digestive capacity and intestinal morphology of Pacific white shrimp (Litopenaeus vannamei). Marine and Freshwater Behaviour and Physiology. Vol. 6, pp: 447-458.
  41. Sing, K.W.; Kamarudin, M.S.; Wilson, J.J. and Azirun, M.S., 2014. Evaluation of blowfly (Chrysomya megacephala) maggot meal as an effective, sustainable replacement for fishmeal in the diet of farmed juvenile red tilapia (Oreochromis sp.). Pakistan Veterinary Journal. Vol. 34, pp: 288-292. 
  42. Sniffen, C.; Ballard, C.; Carter, M.; Cotanch, K.; Dann, H.; Grant, R. and Martin, S.A., 2006. Effects of malic acid on microbial efficiency and metabolism in continuous culture of rumen contents and on performance of mid-lactation dairy cows. Animal Feed Science and Technology. Vol. 127, pp: 13-31.
  43. Sudagar, M.; Hosseinpoor, Z. and Hosseini, A., 2010. The use of citric acid as attractant in diet of grand sturgeon (Huso huso) fry and its effects on growing factors and survival rate. AACL Bioflux. Vol. 3, pp: 311-316.
  44. Vielma, J. and Lall, S., 1997. Dietary formic acid enhances apparent digestibility of minerals in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture Nutrition. Vol. 3, pp; 265-268.
  45. Windmueller, H.G. and Spaeth, A.E., 1978. Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. Journal of Biological Chemistry. Vol. 253, pp: 69-76.
  46. Yufera, M.; Moyano, F.J.; Astola, A.; Pousao, F.P. and Martınez, R.G., 2012. Acidic digestion in a teleost: postprandial and circadian pattern of gastric pH, pepsin activity, and pepsinogen and proton pump mRNAs expression. PLoS ONE. Vol. 7, pp: 1-9.
  47. Zhu, Y.; Qiu, X.; Ding, Q.; Duan, M. and Wang, C., 2014. Combined effects of dietary phytase and organic acid on growth and phosphorus utilization of juvenile yellow catfish Pelteobagrus fulvidraco. Aquaculture. Vol. 430, pp: 1-8.